Fluorescent properties anionic derivative of thioflavin T

  • Alexander A. Maskevich Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus

Abstract

We have investigated the spectral properties of a new benzothiazole dye – a thioflavin T derivative – 3-sulfopropyl-5-methoxy-2-[3-(3,5-diethyl-2-benzothiazolidene)-1-propienyl]-benzothiazolium (Th-C11). Based on quantum-chemical calculations, it is shown that the molecule in the ground state has a flat structure. In an excited state, the minimum energy corresponds to a twisted conformation, in which the aromatic fragments are arranged orthogonally. Since the twisted state is non-fluorescent, the transition to this state (torsion relaxation) is a quenching process. Th-C11 dye exhibits the properties of a fluorescent molecular rotor. As a result of experimental studies, it was found that torsion relaxation of molecular fragments is the main process that determines the strong dependence of the quantum yield and the duration of fluorescence decay on the viscosity of the solvent. A characteristic feature of this dye is the sensitivity of the fluorescence parameters – the quantum yield, the decay duration and the position of the spectrum not only to the viscosity, but also to the polarity of the medium. The paper also explains the dependence of the position of the absorption and fluorescence spectra on the polarity and viscosity of the solvent as a result of the manifestation of the processes of torsion and solvation relaxation of the chromophore and solvent molecules.

Author Biography

Alexander A. Maskevich, Yanka Kupala State University of Grodno, 22 Ažeška Street, Hrodna 230023, Belarus

doctor of science (physics and mathematics), docent; head of the department of general physics, physico-technical faculty

References

  1. Viriot ML, Carré MC, Geoffroy-Chapotot C, Brembilla A, Muller S, Stoltz JF. Molecular rotors as fluorescent probes for biological studies. Clinical Hemorheology and Microcirculation. 1998;19:151–160.
  2. Howell S, Dakanali M, Theodorakis EA, Haidekker MA. Intrinsic and extrinsic temperature-dependency of viscosity-sensitive fluorescent molecular. Journal of Fluorescence. 2012;22(1):457–465. DOI: 10.1007/s10895-011-0979-z.
  3. Kuimova MK, Yahioglu G, Levitt JA, Suhling K. Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. Journal of the American Chemical Society. 2008;130(21):6672–6673. DOI: 10.1021/ja800570d.
  4. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. A ratiometric fluorescent viscosity sensor. Journal of the American Chemical Society. 2006;128(2):398–399. DOI: 10.1021/ja056370a.
  5. Uversky VN, Talapatra A, Gillespie JR, Fink AL. Protein deposits as the molecular basis of amyloidosis. Part II. Localised amyloidosis and neurodegenerative disorders. Medical Science Monitor. 1999;5(6):1238–1254.
  6. Naiki H, Higuchi K, Hosokawa M, Takeda T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T. Analytical Biochemistry. 1989;177(2):244–249. DOI: 10.1016/0003-2697(89)90046-8.
  7. LeVine H. Thioflavine T interaction with amyloid b-sheet structures. Journal of Protein Folding Disorders. 1995;2(1):1–6. DOI: 10.3109/13506129509031881.
  8. Voropai ES, Samtsov MP, Kaplevskii KN, Maskevich AA, Stepuro VI, Povarova OI, et al. Spectral properties of thioflavin T and its complexes with amyloid fibrils. Journal of Applied Spectroscopy. 2003;70(6):868–874. DOI: 10.1023/B:JAPS.0000016303.37573.7e.
  9. Sulatskaya AI, Maskevich AA, Kuznetsova IM, Uversky VN, Turoverov KK. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS ONE. 2010;5(10):e15385. DOI: 10.1371/journal.pone.0015385.
  10. Rovnyagina NR, Sluchanko NN, Tikhonova TN, Fadeev VV, Litskevich AYu, Maskevich AA, et al. Binding of thioflavin T by albumins: an underestimated role of protein oligomeric heterogeneity. International Journal of Biological Macromolecules. 2018; 108:284–290. DOI: 10.1016/j.ijbiomac.2017.12.002
  11. Maskevich AA, Kurguzenkov SA, Lavysh AV. [Fluorescent properties of thioflavin T incorporated in native and denatured proteins]. Vesnik Grodzenskaga dzjarzhawnaga wniversitjeta imja Janki Kupaly. Seryja 2. Matjematyka. Fizika. Infarmatyka, vylichal’naja tjehnika i kiravanne. 2013;2:75–85. Russian.
  12. Maskevich AA. Spectral manifestations of the processes of aggregation and incorporation into the amyloid fibrils of the anionic derivative of thioflavin T. Vesnik Grodzenskaga dzjarzhawnaga wniversitjeta imja Janki Kupaly. Seryja 2. Matjematyka. Fizika. Infar matyka, vylichal’naja tjehnika i kiravanne. 2020;10(1):83–92. Russian.
  13. Maskevich AA, Stsiapura VI, Kurguzenkov SA, Lavysh AV. [Hardware and software complex for fluorescence decay studies]. Vesnik Grodzenskaga dzjarzhawnaga wniversitjeta imja Janki Kupaly. Seryja 2. Matjematyka. Fizika. Infarmatyka, vylichal’naja tjeh nika i kiravanne. 2013;3:107–119. Russian.
  14. O’Connor DV, Phillips D. Time-correlated single photon counting. New York: Academic Press; 1984. 298 p. DOI: 10.1016/ B978-0-12-524140-3.X5001-1.
  15. Stsiapura VI. [Fluorescence kinetics study of multicomponent systems using global analysis method]. Vesnik Grodzenskaga dzjarzhawnaga wniversitjeta imja Janki Kupaly. Seryja 2. Matjematyka. Fizika. Infarmatyka, vylichal’naja tjehnika i kiravanne. 2001; 1:52–61. Russian.
  16. Maskevich AA, Stsiapura VI, Balinski PT. Analysis of fluorescence decay kinetics of thioflavin T by maximum entropy method. Zhurnal prikladnoi spektroskopii. 2010;77(2):209–217. Russian.
  17. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Uversky VN, Kuznetsova IM, Turoverov KK. Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. The Journal of Physical Chemistry B. 2008;112(49):15893–15902. DOI: 10.1021/jp805822c.
  18. Singh PK, Kumbhakar M, Pal H, Nath S. Viscosity effect on the ultrafast bond twisting dynamics in an amyloid fibril sensor: thioflavin-T. The Journal of Physical Chemistry B. 2010;114(17):5920–5927. DOI: 10.1021/jp100371s.
  19. Amdursky N, Erez Y, Huppert D. Molecular rotors: what lies behind the high sensitivity of the thioflavin-T fluorescent marker. Accounts of Chemical Research. 2012;45(9):1548–1557. DOI: 10.1021/ar300053p.
  20. Sulatskaya AI, Sulatsky MI, Povarova OI, Rodina NP, Kuznetsova IM, Lugovskii AA, et al. Trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium perchlorate – new fluorescent dye for testing of amyloid fibrils and study of their structure. Dyes and Pigments. 2018;157(9):385–395. DOI: 10.1016/j.dyepig.2018.05.006.
  21. Loutfy RO, Arnold BA. Effect of viscosity and temperature on torsional relaxation of molecular rotors. The Journal of Physical Chemistry. 1982;86(21):4205–4211. DOI: 10.1021/j100218a023.
  22. Segur JB. Physical properties of glycerol and its solutions. In: Miner CS, Dalton NN, editors. Glycerol. New York: Reinhold Publishing Corporation; 1953. p. 238–334.
Published
2021-05-20
Keywords: derivatives of thioflavin T, quantum-chemical calculations, fluorescent molecular rotor, amyloid fibrils
Supporting Agencies This research was supported by Ministry of Education of Belarus (state program of scientific researches «Photonics and electronics for innovation», task 1.5). The author is grateful to аssociate professor of the Belarusian State University A. A. Lugovskiy for the synthesis of the new dye Th-C11, as well as аssociate professor at the Yanka Kupala State University of Grodno A. V. Lavysh for carrying out quantum-chemical calculations of the new compound.
How to Cite
Maskevich, A. A. (2021). Fluorescent properties anionic derivative of thioflavin T. Journal of the Belarusian State University. Physics, 2, 4-14. https://doi.org/10.33581/2520-2243-2021-2-4-14