Adiabatic Brownian motor with a stepwise potential perturbed by a dichotomous harmonic sygnal

  • Irina V. Shapochkina Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Nastassia D. Savina Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Elena M. Zaytseva National Institute of Higher School, 15 Maskoŭskaja Street, Minsk 220007, Belarus https://orcid.org/0000-0002-5500-2500
  • Viktor M. Rozenbaum Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Street, Kiev 03164, Ukraine https://orcid.org/0000-0003-2889-3915
  • Maria I. Ikim N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Moscow 119991, Russia
  • Aleksander S. Bugaev N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Moscow 119991, Russia

Abstract

We obtained an analytical expression for the average motion velocity of an adiabatic Brownian motor (ratchet), which operates due to small dichotomous spatially harmonic fluctuations of a stepwise potential. The symmetry properties of the average velocity as a functional of the stationary and fluctuating components of the nanoparticle potential energy are revealed, and the ranges of values of the system parameters that ensure the rightward and leftward motion of the motor are determined. We showed that the average motor velocity is a non-monotonic function of the stepwise potential height. For a singular (infinitely high and narrow) potential barrier, the average velocity depends non-monotonically on the «power» of this barrier (the barrier width multiplied by the exponent of the ratio of the barrier height to the thermal energy). The article continues the further development of theoretical methods of symmetry analysis by applying the general approaches proposed by the authors to specific motor systems.

Author Biographies

Irina V. Shapochkina, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of computer modelling, faculty of physics

Nastassia D. Savina, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of physics

Elena M. Zaytseva, National Institute of Higher School, 15 Maskoŭskaja Street, Minsk 220007, Belarus

PhD (physics and mathematics), docent; professor at the department of information technologies in education

Viktor M. Rozenbaum, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Street, Kiev 03164, Ukraine

doctor of science (physics and mathematics), full professor; head of the department of theoretical and experimental physics of nanosystems

Maria I. Ikim, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Moscow 119991, Russia

PhD (physics and mathematics); senior researcher at the laboratory of functional nanocomposites, department of kinetics and catalysis

Aleksander S. Bugaev, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Moscow 119991, Russia

academician of the Russian Academy of Sciences, doctor of science (physics and mathematics), full professor; chief researcher at the laboratory of functional nanocomposites, department of kinetics and catalysis

References

  1. Bressloff PC, Newby JM. Stochastic models of intracellular transport. Reviews of Modern Physics. 2013;85(1):135–196. DOI: 10.1103/RevModPhys.85.135.
  2. Cubero D, Renzoni F. Brownian ratchets: from statistical physics to bio and nano-motors. Cambridge: Cambridge University Press; 2016. 200 p.
  3. Rozenbaum VM, Shapochkina IV, Trakhtenberg LI. Green’s function method in the theory of Brownian motors. Uspekhi fizicheskikh nauk. 2019;189(5):529–543. Russian. DOI: 10.3367/UFNr.2018.04.038347.
  4. Gulyaev YuV, Bugaev AS, Rozenbaum VM, Trakhtenberg LI. Nanotransport controlled by the ratchet effect. Uspekhi fizicheskikh nauk. 2020;190(4):337–354. Russian. DOI: 10.3367/UFNr.2019.05.038570.
  5. Rozenbaum VM, Shapochkina IV, Teranishi Y, Trakhtenberg LI. High-temperature ratchets driven by deterministic and stochastic fluctuations. Physical Review E. 2019;99(1):012103. DOI: 10.1103/PhysRevE.99.012103.
  6. Shapochkina IV, Savina ND, Rozenbaum VМ, Korochkova ТYe. Symmetry properties of a Brownian motor with a sawtooth potential perturbed by harmonic fluctuations. Journal of the Belarusian State University. Physics. 2021;1:41–49. Russian. DOI: 10.33581/2520-2243-2021-1-41-49.
  7. Rozenbaum VM, Shapochkina IV, Teranishi Y, Trakhtenberg LI. [Symmetry of pulsating ratchets]. Pis’ma v Zhurnal eksperimental’noi i teoreticheskoi fiziki. 2018;107(7–8):525–531. Russian. DOI: 10.7868/S0370274X18080118.
  8. Reimann P. Supersymmetric ratchets. Physical Review Letters. 2001;86(22):4992–4995. DOI: 10.1103/PhysRevLett.86.4992.
  9. Denisov S, Flach S, Hänggi P. Tunable transport with broken space – time symmetries. Physics Reports. 2014;538(3):77–120. DOI: 10.1016/j.physrep.2014.01.003.
  10. Rozenbaum VM, Shapochkina IV, Teranishi Y, Trakhtenberg LI. Symmetry of deterministic ratchets. Physical Review E. 2019; 100(2):022115. DOI: 10.1103/PhysRevE.100.022115.
  11. Rozenbaum VM, Makhnovskii YuA, Shapochkina IV, Sheu S-Y, Yang D-Y, Lin SH. Adiabatically slow and adiabatically fast driven ratchets. Physical Review E. 2012;85(4):041116. DOI: 10.1103/PhysRevE.85.041116.
  12. Rozenbaum VM, Shapochkina IV, Sheu S-Y, Yang D-Y, Lin SH. High-temperature ratchets with saw-tooth potentials. Physical Review E. 2016;94(5):052140. DOI: 10.1103/PhysRevE.94.052140.
  13. Astumian RD. Thermodynamics and kinetics of a Brownian motor. Science. 1997;276(5314):917–922. DOI: 10.1126/science. 276.5314.917.
  14. Lau B, Kedem O, Schwabacher J, Kwasnieski D, Weiss EA. An introduction to ratchets in chemistry and biology. Materials Horizons. 2017;4(3):310–318. DOI: 10.1039/c7mh00062f.
  15. Germs WC, Roeling EM, van IJzendoorn LJ, Smalbrugge B, de Vries T, Geluk EJ, et al. High-efficiency dielectrophoretic ratchet. Physical Review E. 2012;86(4):041106. DOI: 10.1103/PhysRevE.86.041106.
  16. Rozenbaum VM, Makhnovskii YuA, Shapochkina IV, Sheu S-Y, Yang D-Y, Lin SH. Diffusion of a massive particle in a periodic potential: application to adiabatic ratchets. Physical Review E. 2015;92(6):062132. DOI: 10.1103/PhysRevE.92.062132.
  17. Shved NYu, Shapochkina IV, Rozenbaum VM. [Temperature-induced reversal of the motion direction of an adiabatic Brownian motor]. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika. 2014;2:27–32. Russian.
  18. Vysotskaya UA, Shapochkina IV, Rozenbaum VM, Trakhtenberg LI. Diffusion of Brownian particles in a spatially periodic potential with a finite life-time. Journal of the Belarusian State University. Physics. 2017;3:33–40. Russian.
  19. Faucheux LP, Bourdieu LS, Kaplan PD, Libchaber AJ. Optical thermal ratchet. Physical Review Letters. 1995;74(9):1504–1507. DOI: 10.1103/physrevlett.74.1504.
  20. Robilliard C, Lucas D, Grynberg G. Modelling a ratchet with cold atoms in an optical lattice. Applied Physics A. 2002;75(2): 213–216. DOI: 10.1007/s003390201333.
  21. Rozenbaum VM. [Mechanism for the appearance of a high-efficiency Brownian motor with fluctuating potential]. Pis’ma v Zhur nal eksperimental’noi i teoreticheskoi fiziki. 2004;79(8):475–479. Russian.
  22. Rozenbaum VM, Korochkova TYe, Liang KK. Conventional and generalized efficiencies of flashing and rocking ratchets: ana lytical comparison of high-efficiency limits. Physical Review E. 2007;75(6):061115. DOI: 10.1103/PhysRevE.75.061115.
  23. Rozenbaum VM, Makhnovskii YuA, Shapochkina IV, Sheu S-Y, Yang D-Y, Lin SH. Adiabatically driven Brownian pumps. Physical Review E. 2013;88(1):012104. DOI: 10.1103/PhysRevE.88.012104.
Published
2021-05-21
Keywords: diffusion transport, diffusional dynamics, ratchet systems, adiabatic Brownian motors, symmetry, stepwise potential, harmonic fluctuations
Supporting Agencies This work was supported by the Belarusian Republican Foundation for Fundamental Research (project F20R-032) and the Russian Foundation for Basic Research (grants 18-29-02012_mk, 20-57-00007_Bel_а, 21-57-52006_MNT_а).
How to Cite
Shapochkina, I. V., Savina, N. D., Zaytseva, E. M., Rozenbaum, V. M., Ikim, M. I., & Bugaev, A. S. (2021). Adiabatic Brownian motor with a stepwise potential perturbed by a dichotomous harmonic sygnal. Journal of the Belarusian State University. Physics, 2, 71-80. https://doi.org/10.33581/2520-2243-2021-2-71-80