Effect of pressure on electronic and optical properties of magnesium silicide and germanide

  • Victor L. Shaposhnikov Belarusian State University of Informatics and Radioelectronics, 6 P. Broŭki Street, Minsk 220013, Belarus
  • Anna V. Krivosheeva Belarusian State University of Informatics and Radioelectronics, 6 P. Broŭki Street, Minsk 220013, Belarus
  • Victor E. Borisenko Belarusian State University of Informatics and Radioelectronics, 6 P. Broŭki Street, Minsk 220013, Belarus

Abstract

A detailed theoretical study of electronic and optical properties of magnesium silicide Mg2Si and germanide Mg2Ge under hydrostatic and uniaxial pressure has been performed by means of linearized augmented plane wave method. It has been found that the direct gap at the G-point increases linearly with the rise of the pressure, while the indirect one decreases becoming zero under the hydrostatic pressure of about 10 GPa. The decrease of the static dielectric constant with the rise of the pressure reflects the changes in the direct gap. Quite different results were observed for uniaxial deformation of the lattice. Either compression or tension of the lattice strongly decreases the indirect band gap. The direct gap depends linearly on the both types of deformations, but dependencies have different slopes.

Author Biographies

Victor L. Shaposhnikov, Belarusian State University of Informatics and Radioelectronics, 6 P. Broŭki Street, Minsk 220013, Belarus

PhD (physics and mathematics); senior researcher at the department of micro- and nanoelectronics, faculty of radioengineering and electronics

Anna V. Krivosheeva, Belarusian State University of Informatics and Radioelectronics, 6 P. Broŭki Street, Minsk 220013, Belarus

PhD (physics and mathematics); senior researcher at the department of micro- and nanoelectronics, faculty of radioengineering and electronics

Victor E. Borisenko, Belarusian State University of Informatics and Radioelectronics, 6 P. Broŭki Street, Minsk 220013, Belarus

doctor of science (physics and mathematics), full professor; head of the department of micro- and nanoelectronics, faculty of radioengineering and electronics

References

  1. Galkin N. G., Galkin K. N., Goroshko D. L., et al. Non-doped and doped Mg stannide films on Si(111) substrates: formation, optical, and electrical properties. Jpn. J. Appl. Phys. 2015. Vol. 54. 07JC06. DOI: 10.7567/JJAP.54.07JC06.
  2. Chuang L., Savvides N., Tan T. T., et al. Thermoelectric properties of Ag-doped Mg 2 Ge thin films prepared by magnetron sputtering. J. Electron. Mater. 2010. Vol. 39, issue 9. P. 1971–1974. DOI: 10.1007/s11664-009-1052-4.
  3. Kajikawa T., Shida K., Shiraishi K., et al. Thermoelectric figure of merit of impurity doped and hot-pressed magnesium silicide elements. XVII Int. Conf. on Thermoelectrics : proc. ICTʼ98 (Nagoya, 24–28 May 1998). Nagoya, 1998. P. 362–369.
  4. LaBotz R. J., Mason D. R., O’Kane D. F. The thermoelectric properties of mixed crystals of Mg2GexSi1–x . J. Electrochem. Soc. 1963. Vol. 110, No. 2. P. 127–134.
  5. Noda Y., Kon H., Furukawa Y., et al. Preparation and thermoelectric properties of Mg2Si1–xGex (x = 0.0 ~ 0.4) solid solution semiconductors. Mater. Trans. 1992. Vol. 33, No. 9. P. 845–850.
  6. Kaibe H. T., Noda Y., Isoda Y., et al. Temperature dependence of thermal conductivity for MgxSi1–xGex solid solution. XVI Int. Conf. on Thermoelectrics : proceedings (Piscataway, 26–29 August 1997). Piscataway, 1997. P. 279–282.
  7. Tani J.-I., Kido H. Lattice dynamics of Mg 2 Si and Mg 2 Ge compounds from first-principles calculations. Comput. Mater. Sci. 2008. Vol. 42. P. 531–536. DOI: 10.1016/j.commatsci.2007.08.018.
  8. Semiconducting Silicides. Ed. by V. E. Borisenko. Berlin, 2000.
  9. Kroemer H., Day G. F., Fairman R. D., et al. Preparation and some properties of Mg2Ge single crystals and of Mg2Gep–n junc tions. J. Appl. Phys. 1965. Vol. 36, issue 8. P. 2461–2470. DOI: 10.1063/1.1714512.
  10. Bessas D., Simon R. E., Friese K., et al. Lattice dynamics in intermetallic Mg 2 Ge and Mg 2 Si. J. Phys. : Condens. Matter. 2014. Vol. 26, No. 48. Article ID 485401. DOI: 10.1088/0953-8984/26/48/485401.
  11. Scouler W. J. Optical properties of Mg 2 Si, Mg 2 Ge, and Mg 2 Sn from 0.6 to 11.0 eV at 77 K. Phys. Rev. 1969. Vol. 178, issue 3. P. 1353–1357. DOI: 10.1103/PhysRev.178.1353.
  12. Morris R. G., Redin R. D., Danielson G. C. Semiconducting properties of Mg 2 Si single crystals. Phys. Rev. 1958. Vol. 109, issue 6. P. 1909 –1915. DOI: 10.1103/PhysRev.109.1909.
  13. Redin R. D., Morris R. G., Danielson G. C. Semiconducting properties of Mg 2 Ge single crystals. Phys. Rev. 1958. Vol. 109, issue 6. P. 1916–1920. DOI: 10.1103/PhysRev.109.1916.
  14. Mahan J. E., Vantomme A., Langouche G., et al. Semiconducting Mg 2 Si thin films prepared by molecular-beam epitaxy. Phys. Rev. B. 1996. Vol. 54, issue 23. P. 16965–16971. DOI: 10.1103/PhysRevB.54.16965.
  15. Vazquez F., Forman R. A., Cardona M. Electroreflectance measurements on Mg 2 Si, Mg 2 Ge, and Mg 2 Sn. Phys. Rev. 1968. Vol. 176, issue 3. P. 905–908.
  16. Stella A., Lynch D. W. Photoconductivity in Mg 2 Si and Mg 2 Ge. J. Phys. Chem. Solids. 1964. Vol. 25, No. 11. P. 1253–1259. DOI: 10.1016/0022-3697(64)90023-X.
  17. Stella A., Brothers A. D., Hopkins R. H., et al. Pressure coefficient of the band gap in Mg 2 Si, Mg 2 Ge, and Mg 2 Sn. Phys. Stat. Solidi. 1967. Vol. 23, issue 2. P. 697–702. DOI: 10.1002/pssb.19670230231.
  18. Au-Yang M. Y., Cohen M. L. Electronic structure and optical properties of Mg 2 Si, Mg 2 Ge, and Mg 2 Sn. Phys. Rev. 1969. Vol. 178, issue 3. P. 1358–1364. DOI: 10.1103/PhysRev.178.1358.
  19. Viennois R., Jund P., Colinet C., Tédenac J.-C. Defect and phase stability of solid solutions of Mg 2 X with an antifluorite structure: an ab initio study. J. Solid State Chem. 2012. Vol. 193. P. 133–136. DOI: 10.1016/j.jssc.2012.04.048. 20. Meloni F., Mooser E., Baldereschi A. Bonding nature of conduction states in electron-deficient semiconductors: Mg 2 Si. Physica B + C. 1983. Vol. 117/118. P. 72–74. DOI: 10.1016/0378-4363(83)90444-8.
  20. Wood D. M., Zunger A. Electronic structure of generic semiconductors: antifluorite silicide and III–V compounds. Phys. Rev. B. 1986. Vol. 34, issue 6. P. 4105– 4120.
  21. Folland N. O. Self-consistent calculations of the energy band structure of Mg2Si. Phys. Rev. 1967. Vol. 158. P. 764 –775. DOI: 10.1103/PhysRev.158.764.
  22. Lee P. M. Electronic structure of magnesium silicide and magnesium germanide. Phys. Rev. 1964. Vol. 135. P. A1110–A1114. DOI: 10.1103/PhysRev.135.A1110.
  23. Benhelal O., Chahed A., Laksari S., et al. First-principles calculations of the structural, electronic and optical properties of IIA – IV antifluorite compounds. Phys. Stat. Solidi (b). 2005. Vol. 242, issue 10. P. 2022–2032. DOI: 10.1002/pssb.200540063.
  24. Bashenov V. K., Mutal A. M., Timofeenko V. V. Valence-band density of states for Mg 2 Si from pseudopotential calculation. Phys. Stat. Solidi (b). 1978. Vol. 87, issue 2. P. K77–K79. DOI: 10.1002/pssb.2220870247.
  25. Arnaud B., Alouani M. All-electron projector-augmented-wave GW approximation: application to the electronic properties of semiconductors. Phys. Rev. B. 2000. Vol. 62, issue 7. P. 4464–4476. DOI: 10.1103/PhysRevB.62.4464.
  26. Arnaud B., Alouani M. Electron-hole excitations in Mg2Si and Mg2 Ge compounds. Phys. Rev. B. 2001. Vol. 64, issue 3. Article ID 033202. DOI: 10.1103/PhysRevB.64.033202.
  27. Chen Q., Xie Q., Zhao F.-J., et al. First-principles calculations of electronic structure and optical properties of strained Mg 2 Si. Chin. Sci. Bull. 2010. Vol. 55, issue 21. P. 2236–2242. DOI: 10.1007/s11434-010-3280-7.
  28. Krivosheeva A. V., Kholod A. N., Shaposhnikov V. L., et al. Band structure of Mg 2 Si and Mg 2 Ge semiconducting compounds with a strained crystal lattice. Semiconductors. 2002. Vol. 36, issue 5. P. 496–500. DOI: 10.1134/1.1478538.
  29. Blaha P., Schwarz K., Madsen G. K. H., et al. WIEN2k, An Augmented Plane Wave + Local Orbitals Program For Calculating Crystal Properties. Wien, 2001.
  30. Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 1992. Vol. 46, issue 11. P. 6671–6687. DOI: 10.1103/PhysRevB.46.6671.
  31. Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996. Vol. 77, issue 18. P. 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.
  32. Lee I.-H., Martin R. M. Applications of the generalized-gradient approximation to atoms, clusters, and solids. Phys. Rev. B. 1997. Vol. 56, issue 12. P. 7197–7205. DOI: 10.1103/PhysRevB.56.7197.
  33. Dal Corso A., Pasquarello A., Baldereschi A., et al. Generalized-gradient approximations to density-functional theory: A comparative study for atoms and solids. Phys. Rev. B. 1996. Vol. 53, issue 3. P. 1180–1185. DOI: 10.1103/PhysRevB.53.1180.
  34. Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992. Vol. 45, issue 23. P. 13244–13249. DOI: 10.1103/PhysRevB.45.13244.
  35. Jain S. C., Willis J. R., Bullough R. A review of theoretical and experimental work on the structure of Ge x Si 1 – x strained layers and superlattices, with extensive bibliography. Adv. Phys. 1990. Vol. 39. P. 127–190. DOI: 10.1080/00018739000101491.
  36. Whitten W. B., Chung P. L., Danielson G. C. Elastic constants and lattice vibration frequencies of Mg 2 Si. J. Phys. Chem. Solids. 1965. Vol. 26, issue 1. P. 49–56. DOI: 10.1016/0022-3697(65)90071-5.
  37. Chung P. L., Whitten W. B., Danielson G. C. Lattice dynamics of Mg 2 Ge. J. Phys. Chem. Solids. 1965. Vol. 26, issue 12.
  38. P. 1753–1760. DOI: 10.1016/0022-3697(65)90206-4.
  39. Madelung O. Semiconductors: Data handbook. 3 rd ed. Berlin, 2004. P. 465–470.
  40. Alouani M., Wills J. M. Calculated optical properties of Si, Ge, and GaAs under hydrostatic pressure. Phys. Rev. B. 1996. Vol. 54, issue 4. P. 2480–2490. DOI: 10.1103/PhysRevB.54.2480.
  41. Filonov A. B., Migas D. B., Shaposhnikov V. L., et al. Electronic and related properties of crystalline semiconducting iron disilicide. J. Appl. Phys. 1996. Vol. 79, issue 10. P. 7708–7712. DOI: 10.1063/1.362436.
Published
2017-01-23
Keywords: magnesium silicide, magnesium germanide, hydrostatic pressure, uniaxial deformation, isotropic deformation
How to Cite
Shaposhnikov, V. L., Krivosheeva, A. V., & Borisenko, V. E. (2017). Effect of pressure on electronic and optical properties of magnesium silicide and germanide. Journal of the Belarusian State University. Physics, 1, 73-81. Retrieved from https://journals.bsu.by/index.php/physics/article/view/427