The matrix effect on the quasi-three-level neodymium laser parameters in the stationary regime

  • Ihar V. Stashkevich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Valeryja I. Herasimenka Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

The analysis of the output characteristics of a neodymium laser with a quasi-three-level scheme for most common crystalline matrices is presented. The matrix containing neodymium ions governs the basic parameters of an active medium: the value of Stark level splitting, lifetime of the excited state, maximal concentration of neodymium ions, absorption and emission cross-sections. The energy characteristics of radiation from such a laser with different matrices in the stationary mode of generation have been studied theoretically. The modeling has been performed for an end-pumped laser. It has been shown that the efficiency is at maximum for a neodymium laser with potassium-gaddinium tungstate (KGW) matrix, it is lowering for gadolinium and yttrium vanadates, being minimal for the matrices of yttrium oxide, yttrium aluminium perovskit (YAP), and gadolinium gallium garnet (GGG). The lowest lasing threshold is characteristic for lasers with yttrium aluminium garnet (YAG) and gadolinium vanadate (GVO) matrices.

Author Biographies

Ihar V. Stashkevich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of laser physics and spectroscopy, faculty of physics

Valeryja I. Herasimenka, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of physics

References

  1. Khramov V. Yu. Raschet elementov lazernykh sistem dlya informatsionnykh i tekhnologicheskikh kompleksov. Saint Petersburg, 2008 (in Russ.).
  2. Stashkevich I. V., Karanouskaya Y. V. Temperature dependence generation of quasi-three-level Nd laser. Vestnik BGU. Ser. 1, Fiz. Mat. Inform. 2016. No. 1. P. 68–74 (in Russ.).
  3. Kaminskii A. A. Laser crystals, their physics and properties. Berlin, 1990.
  4. Mikhailov V. A., Zagumennyi A. I., Sherbakov I. A. Diode-Pumped Lasers Based on GdVO 4 Crystal. Laser Phys. 2003. Vol. 13, No. 3. P. 311–318.
  5. Zavartsev Yu. D., Zagumennyi A. I., Zerrouk F., et al. Diode-pumped quasi-three-level 456 nm Nd : GdVO 4 laser. Quantum. Electron. 2003. Vol. 33, No. 7. P. 651–654. DOI: 10.1070/QE2003v033n07ABEH002473.
  6. He K. N., Wei Z. Y., Li D. H., et al. Diode-pumped Nd : GGG laser at 937 nm under direct pumping. Laser Phys. 2011. Vol. 21, No. 10. P. 1745–1749.
  7. Soulard R., Xu B., Doualan J. L., et al. Ground- and excited-state absorption and emission spectroscopy of Nd : GGG. J. Lumin. 2012. Vol. 132, No. 10. P. 2521–2524. DOI: 10.1016/j.jlumin.2012.03.061.
  8. Walsh B., McMahon J., Edwards W., et al. Spectroscopic characterization of Nd : Y 2 O 3 : application toward a differential absorption lidar system for remote sensing of ozone. J. Opt. Soc. Am. B. 2002. Vol. 19, No. 12. P. 2893–2903. DOI: 10.1364/JOS-AB.19.002893.
  9. Stashkevich I. V., Navitskaya Р. I. Lasing characteristics of quasi-three-level diode-pumped Nd : KGW laser. Vestnik BGU. Ser. 1, Fiz. Mat. Inform. 2016. No. 3. P. 71–75 (in Russ.).
Published
2017-01-23
Keywords: neodymium laser, quasi-three-level scheme, efficiency, lasing threshold, Nd : KGW, Nd : GVO, Nd : YVO, Nd : YAG, Nd : YAP, Nd : GGG, Nd : Y2O3
How to Cite
Stashkevich, I. V., & Herasimenka, V. I. (2017). The matrix effect on the quasi-three-level neodymium laser parameters in the stationary regime. Journal of the Belarusian State University. Physics, 1, 88-94. Retrieved from https://journals.bsu.by/index.php/physics/article/view/429