Modeling of the straw tube tracker for the COMET experiment

  • Dzmitry V. Shoukavy B. I. Stepanov Institute of Physics of National Academy of  Sciences of Belarus, 68 Niezaliežnasci Avenue, Minsk 220072, Belarus
  • Aliaksandr V. Leonau Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Ilya D. Feranchuk Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Victor M. Anishchik Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Vladimir V. Ponariadov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Petr G. Evtoukhovitch Joint Institute for Nuclear Research, 6 Joliot-Curie Street, Dubna 141980, Moscow region, Russia

Abstract

In the present paper a parametric model of a straw tracker is implemented on the basis of technical design report of the COMET experiment within the Geant4 toolkit. This model allows one to smoothly tailor both the diameter and width of the film and to vary the gas mixture. In order to investigate the response of the straw detector to the propogation of the charged particles, a «physical sheet» corresponging to the COMET conditions (i. e. a set of all possible processes for all participating particles defining the interaction in the Geant4) is created. We show that it is impossible to reach high accuracy in identification of the particles solely on the basis of the data obtained within the straw tracker because, depending on the threshold energy, false identification is liable when a muon or pion is treated as an electron. The optimum mixture of gases for the straw tracker within the conditions of the Phase-II of the COMET experiment is obtained on the basis of Monte-Carlo modeling for the propagation of charged particles (electrons, pions and muons) with 105 MeV/c momentum through a system of 5 straw modules. It is shown that, as regards the momentum reconstruction error, the mixture He – C2H6 is an optimum mixture of gases among all the candidates possible (Ar – C2H6, He – C2H6, Xe – C2H6 in the proportion 50 : 50).

Author Biographies

Dzmitry V. Shoukavy, B. I. Stepanov Institute of Physics of National Academy of  Sciences of Belarus, 68 Niezaliežnasci Avenue, Minsk 220072, Belarus

PhD (physics and mathematics); leading researcher at the laboratory of theoretical physics

Aliaksandr V. Leonau, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of theoretical physics and astrophysics, faculty of physics

Ilya D. Feranchuk, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; head of  the department of theoretical physics and astrophysics, faculty of physics

Victor M. Anishchik, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; dean of the faculty of physics

Vladimir V. Ponariadov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; vice-dean of the faculty of physics

Petr G. Evtoukhovitch, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, Dubna 141980, Moscow region, Russia

PhD (physics and mathematics); senior researcher at the Dzelepov laboratory of nuclear problems

References

  1. Emel’yanov V. M. Standartnaya model’ i ee rasshireniya. Moscow, 2007 (in Russ.).
  2. Aad G., Abajyan T., Abbott B., et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 2012. Vol. 716, No. 1. P. 1–29. DOI: 10.1016/j.physletb.2012.08.020.
  3. Chatrchyan S., Khachatryan V., Sirunyan A. M., et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B. 2012. Vol. 716, No. 1. P. 30 – 61. DOI: 10.1016/j.physletb.2012.08.021.
  4. Adam J., Bai X., Baldini A. M., et al. New Limit on the Lepton-Flavor-Violating Decay µg ++ → e. Phys. Rev. Lett. 2011. Vol. 107, issue 17. P. 171801. DOI: 10.1103/PhysRevLett.107.171801.
  5. Bellgart U., Otter G., Eichler R., et al. Search for the decay µ++ +-→ eee. Nucl. Phys. B. 1988. Vol. 299, issue 1. P. 1– 6. DOI: 10.1016/0550-3213(88)90462-2.
  6. Dohmen C., Groth K.-D., Heer B., et al. Test of lepton-flavour conservation in µ→e conversion on titanium. Phys. Lett. B. 1993. Vol. 317, issue 4. P. 631– 636. DOI: 10.1016/0370-2693(93)91383-X.
  7. Kuno Y. A search for muon-to-electron conversion at J-PARC: the COMET experiment. Prog. Theor. Exp. Phys. 2013. Vol. 2013, No. 2. P. 022C01.
  8. Agostinelli S., Allison J., Amako K., et al. Geant4 – a simulation toolkit. Nucl. Instrum. Meth. A. 2003. Vol. 506, No. 3. P. 250 –303.
  9. Comet Collaboration COMET Phase-I. Technical Des. Rep. 2016. URL: http://comet.kek.jp/Documents_files/PAC-TDR-2016/ COMET-TDR-2016_v2.pdf (date of access: 27.02.2017).
  10. Antcheva I., Ballintijn M., Bellenot B., et al. ROOT – a C+ + framework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun. 2009. Vol. 180, issue 12. P. 2499 –2512. DOI: 10.1016/j.cpc.2009.08.005.
Published
2017-05-30
Keywords: standard model, «new physics», µ – e conversion, COMET, straw tube tracker
How to Cite
Shoukavy, D. V., Leonau, A. V., Feranchuk, I. D., Anishchik, V. M., Ponariadov, V. V., & Evtoukhovitch, P. G. (2017). Modeling of the straw tube tracker for the COMET experiment. Journal of the Belarusian State University. Physics, 2, 41-49. Retrieved from https://journals.bsu.by/index.php/physics/article/view/438
Section
Atomic Nucleus and Elementary Particle Physics