Crystal growth and f – f transition intensities analysis of praseodymium ions in yttrium-aluminum orthoborates

  • Maxim P. Demesh Belarusian National Technical University, 65 Niezaliežnasci Avenue, Minsk 220013, Belarus
  • Konstantin N. Gorbachenya Belarusian National Technical University, 65 Niezaliežnasci Avenue, Minsk 220013, Belarus
  • Viktor E. Kisel Belarusian National Technical University, 65 Niezaliežnasci Avenue, Minsk 220013, Belarus
  • Elena A. Volkova Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia
  • Viktor V. Maltsev Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia
  • Elizaveta V. Koporulina Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia
  • Alexey A. Kornienko Vitebsk State University of Technology, 72 Maskoŭski Avenue, Vitebsk 210038, Belarus
  • Elena B. Dunina Vitebsk State University of Technology, 72 Maskoŭski Avenue, Vitebsk 210038, Belarus
  • Nikolay V. Kuleshov Vitebsk State University of Technology, 72 Maskoŭski Avenue, Vitebsk 210038, Belarus

Abstract

A Pr3+ : YAl3(BO3)4 crystal with sizes of  20 × 10 × 10 mm was grown from high-temperature solution and its structural and spectroscopic properties were investigated. The distribution coefficient of praseodymium ranged from 0.6 to 0.8, that yield to the Pr3+ ion concentration of 1.1 ⋅1020 cm–3. Visible and infrared groundstate absorption (3H4) was measurement in dependence on the polarisation. The absorption spectra of the Pr3+ : YAl3(BO3)4 exhibit pronounced polarisation anisotropy. The modified Judd – Offelt theory was applied to evaluate the transitions intensities in absorption and emission, branching ratios and radiative lifetimes of the metastable levels 3P0 and 1D2.

Author Biographies

Maxim P. Demesh, Belarusian National Technical University, 65 Niezaliežnasci Avenue, Minsk 220013, Belarus

PhD (physics and mathematics); senior researcher at the center for optical materials and technologies, faculty of instrumentation engineering

Konstantin N. Gorbachenya, Belarusian National Technical University, 65 Niezaliežnasci Avenue, Minsk 220013, Belarus

PhD (physics and mathematics), docent; senior researcher at the center for optical materials and technologies, faculty of instrumentation engineering

Viktor E. Kisel, Belarusian National Technical University, 65 Niezaliežnasci Avenue, Minsk 220013, Belarus

PhD (physics and mathematics), docent; head of the center for optical materials and technologies, faculty of instrumentation engineering

Elena A. Volkova, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia

PhD (chemistry), docent; associate professor at the department of crystallography and crystal chemistry, faculty of geology

Viktor V. Maltsev, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia

doctor of science (chemistry); senior researcher at the department of crystallography and crystal chemistry, faculty of geology

Elizaveta V. Koporulina, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia

PhD (geology and mineralogy), docent; associate professor at the department of crystallography and crystal chemistry, faculty of geology

Alexey A. Kornienko, Vitebsk State University of Technology, 72 Maskoŭski Avenue, Vitebsk 210038, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of information systems and production automation, faculty of information technology and robotics

Elena B. Dunina, Vitebsk State University of Technology, 72 Maskoŭski Avenue, Vitebsk 210038, Belarus

PhD (physics and mathematics), docent; associate professor at the department of information systems and production automation, faculty of information technology and robotics

Nikolay V. Kuleshov, Vitebsk State University of Technology, 72 Maskoŭski Avenue, Vitebsk 210038, Belarus

doctor of science (physics and mathematics), full professor; head of the department of laser devices and technology, faculty of instrumentation engineering

References

  1. Kränkel C, Marzahl D-T, Moglia F, Huber G, Metz PW. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser & Photonics Reviews. 2016;10(4):548–568. DOI: 10.1002/lpor.201500290.
  2. Metz PW, Reichert F, Moglia F, Müller S, Marzahl D-T, Kränkel C, et al. High-power red, orange, and green Pr3+ : LiYF4 lasers. Optics Letters. 2014;39(11):3193–3196. DOI: 10.1364/OL.39.003193.
  3. Tanaka H, Fujita S, Kannari F. High-power visibly emitting Pr3+ : YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes. Applied Optics. 2018;57(21):5923–5928. DOI: 10.1364/AO.57.005923.
  4. Saiyu Luo, Xigun Yan, Qin Cui, Bin Xu, Huiying Xu, Zhiping Cai. Power scaling of blue-diode-pumped Pr : YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Optics Communications. 2016;380:357–360. DOI: 10.1016/j.optcom.2016.06.026.
  5. Fibrich M, Jelínková H, Šulc J, Nejezchleb K, Škoda V. Visible cw laser emission of GaN-diode pumped Pr : YAlO3 crystal. Applied Physics B: Lasers and Optics. 2009;97(2):363. DOI: 10.1007/s00340-009-3679-5.
  6. Reichert F, Marzahl D-T, Metz P, Fechner M, Hansen N-O, Huber G. Efficient laser operation of Pr3+, Mg2+ : SrAl12O19. Optics Letters. 2012;37(23):4889–4891. DOI: 10.1364/OL.37.004889.
  7. Dorenbos P. The 5d level positions of the trivalent lanthanides in inorganic compounds. Journal of Luminescence. 2000;91(3/4):155–176. DOI: 10.1016/S0022-2313(00)00229-5.
  8. Malyukin YuV, Zhmurin PN, Borysov RS, Roth M, Leonyuk NI. Spectroscopic and luminescent characteristics of PrAl3(BO3)4 crystals. Optics Communications. 2002;201(4/6):355–361. DOI: 10.1016/S0030-4018(01)01681-9.
  9. Cavalli E, Leonyuk NI. Comparative investigation on the emission properties of RAl3(BO3)4 (R = Pr, Eu, Tb, Dy, Tm, Yb) crystals with the huntite structure. Crystals. 2019;9(1):44. DOI: 10.3390/cryst9010044.
  10. Bartl MH, Gatterer K, Cavalli E, Speghini A, Bettinelli M. Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4 single crystals doped with tripositive praseodymium. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy. 2001;57(10):1981–1990. DOI: 10.1016/S1386-1425(01)00484-X.
  11. Boultif A, Louër D. Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography. 2004;37(part 5):724–731. DOI: 10.1107/S0021889804014876.
  12. Shannon RD, Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 1969;B25(part 5):925–946. DOI: 10.1107/S0567740869003220.
  13. Kornienko AA, Kaminskii AA, Dunina EB. Dependence of the line strength of f – f transitions on the manifold energy. II. Analysis of Pr3+ in KPrP4O12. Physica, Status, Solidi B: Basic Solid State Physics. 1990;157(1):267–273. DOI: 10.1002/pssb.2221570127.
  14. Jaque D, Ramirez MO, Bausá LE, García Solé J, Cavalli E, Speghini A, et al. Nd3+ → Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal. Physical Review B: Covering Condensed Matter and Materials Physics. 2003;68(24):035118. DOI: 10.1103/PhysRevB.68.035118.
  15. van Dijk JMF, Schuurmans MFH. On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f – 4f transitions in rare-earth ions. The Journal of Chemical Physics. 1983;78(9):5317. DOI: 10.1063/1.445485.
  16. de Mello Donega C, Meijernik A, Blasse G. Non-radiative relaxation processes of the Pr3+ ion. Journal of Applied Spectroscopy. 1995;62(4):664–670. DOI: 10.1007/BF02606515.
Published
2022-02-03
Keywords: flux growth, rare-earth aluminum borates, praseodymium, absorption, transition intensities
Supporting Agencies This research was supported by Russian Foundation for Basic Research (project No. 18-29-12091 mk).
How to Cite
Demesh, M. P., Gorbachenya, K. N., Kisel, V. E., Volkova, E. A., Maltsev, V. V., Koporulina, E. V., Kornienko, A. A., Dunina, E. B., & Kuleshov, N. V. (2022). Crystal growth and f – f transition intensities analysis of praseodymium ions in yttrium-aluminum orthoborates. Journal of the Belarusian State University. Physics, 1, 4-13. https://doi.org/10.33581/2520-2243-2022-1-4-13