Multislit diffraction grating spectrometer for imaging spectroscopy

  • Igor M. Gulis Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Alexander G. Kupreyeu Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Ivan D. Demidov Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Eugene S. Voropay Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

Multislit dispersive instruments for imaging spectroscopy allow to snapshot a data cube l (x, y, λ) on a photodetector. Usually such spectrometers use a prism as a dispersive element. Due to a significant spectral dependence of the prism dispersion, the efficacy of using the 2D photodetector area, where a data cube l (x, y, λ) is projected, is substantially decreased. According to our approach, a diffraction grating dispersive element offers a dramatic increase in the information capacity owing to elimination of the useless diffraction-order rays due to location of a transmission diffraction grating near the multislit entrance mask of a spectrometer in a noncollimated beam. The proposed design has the advantage of quick dispersion tuning by shift of the grating along the optical axis. A computer simulation of a multislit spectrometer has been performed. It is shown that FWHM of beam spots in the dispersion direction is not higher than 15 mm in the working spectral range 405 –700 nm when using the Nikon Nikkor AF 50 mm 1.4D photographic lenses. That corresponds to a spectral resolution of about 10 nm for the number of resolved spatial elements up to 2 ⋅ 104.

Author Biographies

Igor M. Gulis, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

doctor of science (physics and mathematics); professor at the department of laser physics and spectroscopy, faculty of physics

Alexander G. Kupreyeu, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics); researcher at the laboratory of nonlinear optics and spectroscopy, department of laser physics and spectroscopy and department of physical optics, faculty of physics

Ivan D. Demidov, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

postgraduate student at the department of laser physics and spectroscopy, faculty of physics

Eugene S. Voropay, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

doctor of science (physics and mathematics), full professor; head of the department of laser physics and spectroscopy, faculty of physics

References

  1. Xie Y., Sha Z., Yu M. Remote sensing imagery in vegetation mapping : a review. J. Plant Ecol. 2008. Vol. 1, No. 1. P. 9–23.
  2. Lu G., Fei B. Medical hyperspectral imaging : a review. J. Biomed. Optics. 2014. Vol. 19, No. 1. P. 010901-1–010901-23.
  3. Thompson D. R., Leifer I., Bovensmann H., et al. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane. Atmos. Meas. Tech. 2015. Vol. 8, No. 10. P. 4383–4397.
  4. Kuula J., Pölönen I., Puupponen H., et al. Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details. Proc. SPIE. 2012. Vol. 8359. P. 83590P-1–83590P-11.
  5. Qin J., Chao K., Kim M. S., et al. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 2013. Vol. 118, No. 2. P. 157–171.
  6. Mouroulis P., Green R. O., Chrien T. G. Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl. Opt. 2000. Vol. 39, No. 13. P. 2210–2220.
  7. Tran C. D. Principles, Instrumentation, and Applications of Infrared Multispectral Imaging, An Overview. Anal. Lett. 2005. Vol. 38, No. 5. P. 735–752.
  8. Hagen N., Kudenov M. W. Review of snapshot spectral imaging technologies. Opt. Eng. 2013. Vol. 52, No. 9. P. 090901-1–090901-23.
  9. Bland-Hawthorn J., Bryant J., Robertson G., et al. Hexabundles: imaging fiber arrays for low-light astronomical applications. Opt. Expr. 2011. Vol. 19, No. 3. P. 2649–2661.
  10. Bodkin A., Sheinis A., Norton A., et al. Video-rate chemical identification and visualization with snapshot hyperspectral imaging. Proc. SPIE. 2012. Vol. 8374. P. 83740C-1–83740C-13.
  11. Volin C. E., Gleeson T. M., Descour M. R., et al. Portable computed-tomography imaging spectrometer. Proc. SPIE. 1996. Vol. 2819. P. 224–230.
  12. Kudenov M. W., Dereniak E. L. Compact real-time birefringent imaging spectrometer. Opt. Expr. 2012. Vol. 20, No. 16. P. 17973–17986.
  13. Sugai H., Hattori T., Kawai A., et al. The Kyoto tridimensional spectrograph II on Subaru and the University of Hawaii 88 in telescopes. Publ. Astron. Soc. Pac. 2010. Vol. 122, No. 887. P. 103–118.
  14. Bodkin A., Sheinis A., Norton A., et al. Snapshot hyperspectral imaging – the hyperpixel array camera. Proc. SPIE. 2009. Vol. 7334. P. 73340H-1–73340H-11.
Published
2017-09-29
Keywords: multispectral, dispersive, diffraction grating, multislit
How to Cite
Gulis, I. M., Kupreyeu, A. G., Demidov, I. D., & Voropay, E. S. (2017). Multislit diffraction grating spectrometer for imaging spectroscopy. Journal of the Belarusian State University. Physics, 3, 4-11. Retrieved from https://journals.bsu.by/index.php/physics/article/view/450