The potential energy surface of the triplet ground state of a uranium trioxide molecule
Abstract
The potential energy surfaces of the ground and first excited states of the uranium trioxide molecule UO3 were constructed on the basis of quantum-chemical ab initio calculations in the multi-configuration CASSCF(6,8) approximation. A planar equilibrium geometric configuration, which is intermediate between the T- and Y-form and having С2v symmetry, was established. The presence of three equivalent equilibrium configurations separated by low potential barriers (40 cm–1) was reported. It was shown that at the considered level of theory near the minimum of the potential energy surface, which has a nontrivial topology, the ground state of the UO3 molecule is a triplet. The triplet state indicates the transient cha racter of the molecule and predicts its possible paramagnetic properties, which offer the possibilities for studying of such molecules by magneto-optical traps as an alternative to low-temperature inert gas matrices interacting with molecules isolated in them.
References
- Gabelnick S. D., Reedy G. T., Chasanov M. G. The infrared spectrum of matrix-isolated uranium oxide vapor species. Chem. Phys. Lett. 1973. Vol. 19, issue 1. P. 90–93. DOI: 10.1016/0009-2614(73)87070-8.
- Gabelnick S. D., Reedy G. T., Chasanov M. G. Infrared spectra of matrix-isolated uranium oxide species. I. The stretching region. J. Chem. Phys. 1973. Vol. 58, issue 10. P. 4468–4475. DOI: 10.1063/1.1679009.
- Gabelnick S. D., Reedy G. T., Chasanov M. G. Infrared spectra of matrix-isolated uranium oxide species. II. Spectral interpretation and structure of UO3. J. Chem. Phys. 1973. Vol. 59, issue 12. P. 6397–6404. DOI: 10.1063/1.1680018.
- Green D. W., Reedy G. T., Gabelnick S. D. Infrared spectra of matrix-isolated uranium oxide species. III. Lowfrequency modes. J. Chem. Phys. 1980. Vol. 73, issue 9. P. 4207–4216. DOI: 10.1063/1.440704.
- Hunt R. D., Andrews L. Reactions of pulsed-laser evaporated uranium atoms with molecular oxygen: Infrared spectra of UO, UO2, UO3, UO2 +, UO22+, and UO3 — O2 in solid argon. J. Chem. Phys. 1993. Vol. 98, issue 5. P. 3690–3686. DOI: 10.1063/1.464045.
- Zhou M., Andrews L. Infrared spectra of UO2, UO2 +, and UO2 – in solid neon. J. Phys. Chem. A. 2000. Vol. 104, issue 23. P. 5495–5502. DOI: 10.1021/jp000292q.
- Pyykkö P., Li J., Runeberg N. Quasirelativistic pseudopotential study of species isoelectronic to uranyl and the equatorial coordination of uranyl. J. Phys. Chem. 1994. Vol. 98, issue 18. P. 4809–4813. DOI: 10.1021/j100069a007.
- Privalov T., Schimmelpfennig B., Wahlgren U., et al. Structure and thermodynamics of uranium(VI) complexes in the gas phase: a comparison of experimental and ab initio data. J. Phys. Chem. A. 2002. Vol. 106, issue 46. P. 11277–11282. DOI: 10.1021/jp0260402.
- Zaitsevskii A. V. Molecular anions of uranium fluorides and oxides: first principle based relativistic calculations. Radiochemistry. 2013. Vol. 55, issue 4. P. 353–356. DOI: 10.1134/S1066362213040012.
- Shundalau M. B., Zajogin A. P., Komiak A. I., et al. A DFT modeling of the uranium trioxide vibration spectra characteristics. J. Spectrosc. Dyn. 2012. Vol. 2. P. 19–24.
- Shundalau M. B., Umreiko D. S. Quantum chemical analysis of uranium trioxide conformes. J. Appl. Spectrosc. 2014. Vol. 80, issue 6. P. 807–812. DOI: 10.1007/s10812-014-9848-2.
- Jensen F. Introduction to Computational Chemistry. Chichester, 2007.
- Kovács A. Relativistic multireference quantum chemical study of the electronic structure of actinide trioxide molecules. J. Phys. Chem. A. 2017. Vol. 121, issue 12. P. 2523–2530. DOI: 10.1021/acs.jpca.7b01344.
- Schmidt M. W., Baldridge K. K., Boatz J. A., et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. Vol. 14, No. 11. P. 1347–1363. DOI: 10.1002/jcc.540141112.
- Moritz A., Cao X., Dolg M. Quasirelativistic energy-consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements. Theor. Chem. Acc. 2007. Vol. 118, issue 5. P. 845–854. DOI: 10.1007/s00214-007-0330-6.
- Schuchardt K. L., Didier B. T., Elsethagen T., et al. Basis set exchange: A community database for computational sciences. J. Chem. Inf. Model. 2007. Vol. 47, No. 3. P. 1045–1052. DOI: 10.1021/ci600510j.
- Bode B. M., Gordon M. S. MacMolPlt: a graphical user interface for GAMESS. J. Mol. Graph. Model. 1998. Vol. 16, No. 3. P. 133–138. DOI: 10.1016/S1093-3263(99)00002-9.
Copyright (c) 2017 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)