The potential energy surface of the triplet ground state of a uranium trioxide molecule

  • Darya N. Meniailava Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Maksim B. Shundalau Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus; A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurčataǔ Street, 7, 220108, Minsk, Belarus

Abstract

The potential energy surfaces of the ground and first excited states of the uranium trioxide molecule UO3 were constructed on the basis of quantum-chemical ab initio calculations in the multi-configuration CASSCF(6,8) approximation. A planar equilibrium geometric configuration, which is intermediate between the T- and Y-form and having С2v symmetry, was established. The presence of three equivalent equilibrium configurations separated by low potential barriers (40 cm–1) was reported. It was shown that at the considered level of theory near the minimum of the potential energy surface, which has a nontrivial topology, the ground state of the UO3 molecule is a triplet. The triplet state indicates the transient cha racter of the molecule and predicts its possible paramagnetic properties, which offer the possibilities for studying of such molecules by magneto-optical traps as an alternative to low-temperature inert gas matrices interacting with molecules isolated in them. 

Author Biographies

Darya N. Meniailava, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

postgraduate student at the department of physical optics, faculty of physics

Maksim B. Shundalau, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus; A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurčataǔ Street, 7, 220108, Minsk, Belarus

PhD (physics and mathematics), docent; associate professor at the department of physical optics, faculty of physics of the Belarusian State University; senior researcher at the laboratory of physical chemistry of polymer and natural organic compounds, A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University

References

  1. Gabelnick S. D., Reedy G. T., Chasanov M. G. The infrared spectrum of matrix-isolated uranium oxide vapor species. Chem. Phys. Lett. 1973. Vol. 19, issue 1. P. 90–93. DOI: 10.1016/0009-2614(73)87070-8.
  2. Gabelnick S. D., Reedy G. T., Chasanov M. G. Infrared spectra of matrix-isolated uranium oxide species. I. The stretching region. J. Chem. Phys. 1973. Vol. 58, issue 10. P. 4468–4475. DOI: 10.1063/1.1679009.
  3. Gabelnick S. D., Reedy G. T., Chasanov M. G. Infrared spectra of matrix-isolated uranium oxide species. II. Spectral interpretation and structure of UO3. J. Chem. Phys. 1973. Vol. 59, issue 12. P. 6397–6404. DOI: 10.1063/1.1680018.
  4. Green D. W., Reedy G. T., Gabelnick S. D. Infrared spectra of matrix-isolated uranium oxide species. III. Lowfrequency modes. J. Chem. Phys. 1980. Vol. 73, issue 9. P. 4207–4216. DOI: 10.1063/1.440704.
  5. Hunt R. D., Andrews L. Reactions of pulsed-laser evaporated uranium atoms with molecular oxygen: Infrared spectra of UO, UO2, UO3, UO2 +, UO22+, and UO3 — O2 in solid argon. J. Chem. Phys. 1993. Vol. 98, issue 5. P. 3690–3686. DOI: 10.1063/1.464045.
  6. Zhou M., Andrews L. Infrared spectra of UO2, UO2 +, and UO2 – in solid neon. J. Phys. Chem. A. 2000. Vol. 104, issue 23. P. 5495–5502. DOI: 10.1021/jp000292q.
  7. Pyykkö P., Li J., Runeberg N. Quasirelativistic pseudopotential study of species isoelectronic to uranyl and the equatorial coordination of uranyl. J. Phys. Chem. 1994. Vol. 98, issue 18. P. 4809–4813. DOI: 10.1021/j100069a007.
  8. Privalov T., Schimmelpfennig B., Wahlgren U., et al. Structure and thermodynamics of uranium(VI) complexes in the gas phase: a comparison of experimental and ab initio data. J. Phys. Chem. A. 2002. Vol. 106, issue 46. P. 11277–11282. DOI: 10.1021/jp0260402.
  9. Zaitsevskii A. V. Molecular anions of uranium fluorides and oxides: first principle based relativistic calculations. Radiochemistry. 2013. Vol. 55, issue 4. P. 353–356. DOI: 10.1134/S1066362213040012.
  10. Shundalau M. B., Zajogin A. P., Komiak A. I., et al. A DFT modeling of the uranium trioxide vibration spectra characteristics. J. Spectrosc. Dyn. 2012. Vol. 2. P. 19–24.
  11. Shundalau M. B., Umreiko D. S. Quantum chemical analysis of uranium trioxide conformes. J. Appl. Spectrosc. 2014. Vol. 80, issue 6. P. 807–812. DOI: 10.1007/s10812-014-9848-2.
  12. Jensen F. Introduction to Computational Chemistry. Chichester, 2007.
  13. Kovács A. Relativistic multireference quantum chemical study of the electronic structure of actinide trioxide molecules. J. Phys. Chem. A. 2017. Vol. 121, issue 12. P. 2523–2530. DOI: 10.1021/acs.jpca.7b01344.
  14. Schmidt M. W., Baldridge K. K., Boatz J. A., et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. Vol. 14, No. 11. P. 1347–1363. DOI: 10.1002/jcc.540141112.
  15. Moritz A., Cao X., Dolg M. Quasirelativistic energy-consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements. Theor. Chem. Acc. 2007. Vol. 118, issue 5. P. 845–854. DOI: 10.1007/s00214-007-0330-6.
  16. Schuchardt K. L., Didier B. T., Elsethagen T., et al. Basis set exchange: A community database for computational sciences. J. Chem. Inf. Model. 2007. Vol. 47, No. 3. P. 1045–1052. DOI: 10.1021/ci600510j.
  17. Bode B. M., Gordon M. S. MacMolPlt: a graphical user interface for GAMESS. J. Mol. Graph. Model. 1998. Vol. 16, No. 3. P. 133–138. DOI: 10.1016/S1093-3263(99)00002-9.
Published
2017-09-29
Keywords: UO3 (uranium trioxide), potential energy surface, CASSCF
How to Cite
Meniailava, D. N., & Shundalau, M. B. (2017). The potential energy surface of the triplet ground state of a uranium trioxide molecule. Journal of the Belarusian State University. Physics, 3, 20-25. Retrieved from https://journals.bsu.by/index.php/physics/article/view/452