Electromagnetic wave scattering by inhomogeneous cylindrically symmetric bianisotropic objects
Abstract
Operator approach is elaborated for determining electric and magnetic fields of the waves propagating in radially inhomogeneous cylindrically symmetric bianisotropic media. For the waves in the cylinder cross-section it is feasible to derive any closed-form solution of the Maxwell equations provided inhomogeneous materials are bianisotropic or anisotropic, but not biisotropic or isotropic. In this paper we find the particular solutions in the form of the Legendre cylindrical waves and determine the corresponding material parameters of the media. Scattering theory is generalized to the inhomogeneous cylindrical particles and applied to the inhomogeneous objects supporting Legendre electromagnetic waves.
References
- Adams M. An introduction to optical waveguides. Moscow, 1984 (in Russ.).
- Unger H.-G. Planar optical waveguides and fibres. Moscow, 1980 (in Russ.).
- Snyder A., Love J. Optical waveguide theory. Moscow, 1987 (in Russ.).
- Bohren C. F., Huffman D. R. Absorption and scattering of light by small particles. New York, 1983.
- Tsang L., Kong J. A., Ding K.-H. Scattering of electromagnetic waves: Theories and applications. New York, 2000.
- Van de Hulst H. C. Light scattering by small particles. New York, 1981.
- Shvets G., Tsukerman I. Plasmonics and plasmonic metamaterials: Analysis and applications. Singapore, 2012.
- Noginov M. A., Podolskiy V. A. (eds.). Tutorials in metamaterials. Boca Raton, 2012.
- Cai W., Shalaev V. Optical metamaterials: Fundamentals and applications. Heidelberg, 2010.
- Mirmoosa M. S., Kosulnikov S. Yu., Simovski C. R. Magnetic hyperbolic metamaterial of high-index nanowires. Phys. Rev. B. 2016. Vol. 94. P. 075138.
- Poddubny A. N., Belov P. A., Kivshar Yu. S. Purcell effect in wire metamaterials. Phys. Rev. B. 2013. Vol. 87. P. 035136.
- Benisty H., Goudail F. Dark-field hyperlens exploiting a planar fan of tips. J. Opt. Soc. Am. B. 2012. Vol. 29. P. 2595–2602.
- Kosulnikov S., Filonov D., Glybovski S., et al. Wire-medium hyperlens for enhancing radiation from subwavelength dipole sources. IEEE Trans. Antennas Propag. 2015. Vol. 63. P. 4848–4856.
- Soifer V. A. Diffractive nanophotonics. Boca Raton, 2014.
- Miyazaki Y. Scattering and diffraction of electromagnetic waves by inhomogeneous dielectric cylinder. Radio Science. 1981. Vol. 16. P. 1009–1014.
- Virkki A., Muinonen K., Penttilä A. Radar albedos and circular-polarization ratios for realistic inhomogeneous media using the discrete-dipole approximation. J. Quant. Spectros. Radiat. Transf. 2014. Vol. 146. P. 480–491.
- Pendry J. B., Schurig D., Smith D. R. Controlling electromagnetic fields. Science. 2006. Vol. 312. P. 1780–1782.
- Leonhardt U. Optical conformal mapping. Science. 2006. Vol. 312. P. 1777–1780.
- Barkovsky L. M., Furs A. N. Operator methods of description of optical fields in complex media. Minsk, 2003 (in Russ.).
- Borzdov G. N. Frequency domain wave-splitting techniques. J. Math. Phys. 1997. Vol. 38. P. 6328–6366.
- Novitsky A. V., Barkovskii L. M. Operator matrices for describing guiding propagation in circular bianisotropic fibres. J. Phys. A: Math. Gen. 2005. Vol. 38. P. 391–404.
- Novitsky A. V., Barkovsky L. M. Matrix approach for light scattering from a multilayered rotationally symmetric bianisotropic sphere. Phys. Rev. A. 2008. Vol. 77. P. 033849.
- Fedorov F. I. Theory of gyrotropy. Minsk, 1976 (in Russ.).
- Novitsky A. V. Matrix approach for light scattering by bianisotropic cylindrical particles. J. Phys.: Condens. Matter. 2007. Vol. 19. P. 1–11.
- Novitsky A. V., Alvarez Rodriguez R. J., Galynsky V. M. Spherical Bessel solution of Maxwellʼs equations in inhomogeneous rotationally symmetric media. J. Belarus. State Univ. Phys. 2017. No. 1. P. 52–60 (in Russ.).
- Novitsky A., Shalin A. S., Lavrinenko A. V. Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering. Phys. Rev. A. 2017. Vol. 95. P. 053818.
Copyright (c) 2017 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)