Electromagnetic wave scattering by inhomogeneous cylindrically symmetric bianisotropic objects

  • Andrey V. Novitsky Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus; DTU Fotonik, Technical University of Denmark, Ørsteds Plads, 343, 2800, Kgs. Lyngby, Denmark
  • Richard Jose Alvarez Rodriguez Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Vladimir M. Galynsky Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

Operator approach is elaborated for determining electric and magnetic fields of the waves propagating in radially inhomogeneous cylindrically symmetric bianisotropic media. For the waves in the cylinder cross-section it is feasible to derive any closed-form solution of the Maxwell equations provided inhomogeneous materials are bianisotropic or anisotropic, but not biisotropic or isotropic. In this paper we find the particular solutions in the form of the Legendre cylindrical waves and determine the corresponding material parameters of the media. Scattering theory is generalized to the inhomogeneous cylindrical particles and applied to the inhomogeneous objects supporting Legendre electromagnetic waves. 

Author Biographies

Andrey V. Novitsky, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus; DTU Fotonik, Technical University of Denmark, Ørsteds Plads, 343, 2800, Kgs. Lyngby, Denmark

doctor of science (physics and mathematics), docent; professor at the department of theoretical physics and astrophysics, faculty of physics, of the Belarusian State University; senior researcher at the metamaterials group, DTU Fotonik, Technical University of Denmark

Richard Jose Alvarez Rodriguez, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

postgraduate student at the department of theoretical physics and astrophysics, faculty of physics

Vladimir M. Galynsky, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics); associate professor at the department of theoretical physics and astrophysics, faculty of physics

References

  1. Adams M. An introduction to optical waveguides. Moscow, 1984 (in Russ.).
  2. Unger H.-G. Planar optical waveguides and fibres. Moscow, 1980 (in Russ.).
  3. Snyder A., Love J. Optical waveguide theory. Moscow, 1987 (in Russ.).
  4. Bohren C. F., Huffman D. R. Absorption and scattering of light by small particles. New York, 1983.
  5. Tsang L., Kong J. A., Ding K.-H. Scattering of electromagnetic waves: Theories and applications. New York, 2000.
  6. Van de Hulst H. C. Light scattering by small particles. New York, 1981.
  7. Shvets G., Tsukerman I. Plasmonics and plasmonic metamaterials: Analysis and applications. Singapore, 2012.
  8. Noginov M. A., Podolskiy V. A. (eds.). Tutorials in metamaterials. Boca Raton, 2012.
  9. Cai W., Shalaev V. Optical metamaterials: Fundamentals and applications. Heidelberg, 2010.
  10. Mirmoosa M. S., Kosulnikov S. Yu., Simovski C. R. Magnetic hyperbolic metamaterial of high-index nanowires. Phys. Rev. B. 2016. Vol. 94. P. 075138.
  11. Poddubny A. N., Belov P. A., Kivshar Yu. S. Purcell effect in wire metamaterials. Phys. Rev. B. 2013. Vol. 87. P. 035136.
  12. Benisty H., Goudail F. Dark-field hyperlens exploiting a planar fan of tips. J. Opt. Soc. Am. B. 2012. Vol. 29. P. 2595–2602.
  13. Kosulnikov S., Filonov D., Glybovski S., et al. Wire-medium hyperlens for enhancing radiation from subwavelength dipole sources. IEEE Trans. Antennas Propag. 2015. Vol. 63. P. 4848–4856.
  14. Soifer V. A. Diffractive nanophotonics. Boca Raton, 2014.
  15. Miyazaki Y. Scattering and diffraction of electromagnetic waves by inhomogeneous dielectric cylinder. Radio Science. 1981. Vol. 16. P. 1009–1014.
  16. Virkki A., Muinonen K., Penttilä A. Radar albedos and circular-polarization ratios for realistic inhomogeneous media using the discrete-dipole approximation. J. Quant. Spectros. Radiat. Transf. 2014. Vol. 146. P. 480–491.
  17. Pendry J. B., Schurig D., Smith D. R. Controlling electromagnetic fields. Science. 2006. Vol. 312. P. 1780–1782.
  18. Leonhardt U. Optical conformal mapping. Science. 2006. Vol. 312. P. 1777–1780.
  19. Barkovsky L. M., Furs A. N. Operator methods of description of optical fields in complex media. Minsk, 2003 (in Russ.).
  20. Borzdov G. N. Frequency domain wave-splitting techniques. J. Math. Phys. 1997. Vol. 38. P. 6328–6366.
  21. Novitsky A. V., Barkovskii L. M. Operator matrices for describing guiding propagation in circular bianisotropic fibres. J. Phys. A: Math. Gen. 2005. Vol. 38. P. 391–404.
  22. Novitsky A. V., Barkovsky L. M. Matrix approach for light scattering from a multilayered rotationally symmetric bianisotropic sphere. Phys. Rev. A. 2008. Vol. 77. P. 033849.
  23. Fedorov F. I. Theory of gyrotropy. Minsk, 1976 (in Russ.).
  24. Novitsky A. V. Matrix approach for light scattering by bianisotropic cylindrical particles. J. Phys.: Condens. Matter. 2007. Vol. 19. P. 1–11.
  25. Novitsky A. V., Alvarez Rodriguez R. J., Galynsky V. M. Spherical Bessel solution of Maxwellʼs equations in inhomogeneous rotationally symmetric media. J. Belarus. State Univ. Phys. 2017. No. 1. P. 52–60 (in Russ.).
  26. Novitsky A., Shalin A. S., Lavrinenko A. V. Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering. Phys. Rev. A. 2017. Vol. 95. P. 053818.
Published
2017-09-29
Keywords: propagation of electromagnetic waves, metamaterials, light scattering
Supporting Agencies The authors acknowledge financial support from the Belarusian Republican Foundation for Fundamental Research (grant No. F16R-049).
How to Cite
Novitsky, A. V., Rodriguez, R. J. A., & Galynsky, V. M. (2017). Electromagnetic wave scattering by inhomogeneous cylindrically symmetric bianisotropic objects. Journal of the Belarusian State University. Physics, 3, 41-49. Retrieved from https://journals.bsu.by/index.php/physics/article/view/455
Section
Physics of Electromagnetic Phenomena