Action of optical forces on inhomogeneous anisotropic particles
Abstract
Optical forces and torques exerted on inhomogeneous anisotropic spherical and cylindrical particles by a couple of plane electromagnetic waves are calculated. The optical forces are computed in dipole approximation using the closedform expressions for particle polarizabilities and numerically taking into consideration the higher-order multipole moments. Wecompare these calculation techniques and demonstrate their agreement in the region of dipole approximation. Conditions for pulling inhomogeneous particles by means of the light beam without intensity gradient are revealed. Thecomparison between homogeneous and inhomogeneous spherical particles is carried out. It is found that the scatterer inhomogeneity shifts the multipole resonances providing one more way for controlling value and direction of the optical force. Spin torque is calculated in the dipole approximation. We show that it does not vanish for non-linear polarization of the incident wave both in the case of spherical and cylindrical inhomogeneous particle. Theresults obtained in this work can be applied for designing new types of dynamical metamaterials, as well as for describing of movement of complex objects in optical tweezers.
References
- Maxwell J. K. A Treatise on Electricity and Magnetism. New York : Dover Publications Inc., 1954.
- Lebedew P. N. Untersuchungen über die Druckkräfte des Lichtes. Annalen der Physik. 1901. Vol. 6. P. 433–460. DOI: 10.1002/andp.19013111102.
- Panah M. E. A., Semenova E., Lavrinenko A. Enhancing Optical Forces in InP-Based Waveguides. Sci. Rep. 2017. Vol. 7. Article ID: 3106. DOI: 10.1038/s41598-017-03409-1.
- Armata F., Latmiral L., Pikovski I., et al. Quantum and classical phases in optomechanics. Phys. Rev. A. 2016. Vol. 93. Article ID: 063862. DOI: 10.1103/PhysRevA.93.063862.
- Groblacher S., Hammerer K., Vanner M. R., et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature. 2009. Vol. 460. P. 724–727. DOI: 10.1038/nature08171.
- Usami K., Naesby A., Bagci T., et al. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nat. Phys. 2012. Vol. 8. P. 168–172. DOI: 10.1038/NPHYS2196.
- Kippenberg T. J., Vahala K. J. Cavity optomechanics: Back-action at the mesoscale. Science. 2008. Vol. 321. P. 1172–1176. DOI: 10.1126/science.1156032.
- Ashkin A., Dziedzic M. J., Bjorkholm E. J., et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986. Vol. 11. P. 288–290. DOI: 10.1364/OL.11.000288.
- Grier D. G. A revolution in optical manipulation. Nat. Photonics. 2003. Vol. 424. P. 810–816. DOI: 10.1038/nature01935.
- Dholakia K., Zemánek P. Colloquium: Gripped by light: Optical binding. Rev. Mod. Phys. 2010. Vol. 82. P. 1767–1791. DOI: 10.1103/RevModPhys.82.1767.
- Diekmann R., Wolfson D. L., Spahn C., et al. Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nat. Commun. 2016. Vol. 7. Article ID: 13711. DOI: 10.1038/ncomms13711.
- Bui A. A. M., Stilgoe A. B., Lenton I. C. D., et al. Theory and practice of simulation of optical tweezers. J. Quant. Spectrosc. Radiat. Transf. 2017. Vol. 195. P. 66–75. DOI: 10.1016/j.jqsrt.2016.12.026.
- Drobczyński S., Katarzyna Prorok, Konstantin Tamarov, et al. Toward Controlled Photothermal Treatment of Single Cell: Optically Induced Heating and Remote Temperature Monitoring In Vitro through Double Wavelength Optical Tweezers. ACS Photonics. 2017. Vol. 4. P. 1993–2002. DOI: 10.1021/acsphotonics.7b00375.
- Chen J., Ng J., Lin Z., et al. Optical pulling force. Nat. Photonics. 2011. Vol. 5. P. 531–534. DOI: 10.1038/nphoton.2011.153.
- Novitsky A., Qiu C.-W., Wang H., et al. Single Gradientless Light Beam Drags Particles as Tractor Beams. Phys. Rev. Lett. 2011. Vol. 107. Article ID: 203601. DOI: 10.1103/PhysRevLett.107.203601.
- Sukhov S., Dogariu A. Negative nonconservative forces: Optical «tractor beams» for arbitrary objects. Phys. Rev. Lett. 2011. Vol. 107. Article ID: 203602. DOI: 10.1103/PhysRevLett.107.203602.
- Jackson J. D. Classical electrodynamics. New York : John Wiley and Sons, 1998.
- Nieto-Vesperinas M., Sáenz J. J., Gómez-Medina R., et al. Optical forces on small magnetodielectric particles. Opt. Express. 2010. Vol. 18. P. 11428–11443. DOI: 10.1364/OE.18.011428.
- Goldstein M., Michalik E. R. Theory of Scattering by an Inhomogeneous Solid Possessing Fluctuations in Density and Anisotropy. J. Appl. Phys. 1955. Vol. 26. P. 1450–1457. DOI: 10.1063/1.1721930.
- Simpson S. H., Hanna S. Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. Opt. Express. 2011. Vol. 19. P. 16526–16541. DOI: 10.1364/OE.19.016526.
- Hellesø O. G. Optical pressure and numerical simulation of optical forces. Appl. Opt. 2017. Vol. 56. P. 3354–3358. DOI: 10.1364/AO.56.003354.
- Novitsky A., Ding W., Wang M., et al. Pulling cylindrical particles using a soft-nonparaxial tractor beam. Sci. Rep. 2017. Vol. 7. Article ID: 652. DOI: 10.1038/s41598-017-00735-2.
- Chaumet P. C., Rahmani A. Electromagnetic force and torque on magnetic and negative-index scatterers. Opt. Express. 2009. Vol. 17. P. 2224–2234. DOI: 10.1364/OE.17.002224.
- Novitsky A. V., Alvarez Rodriguez R. J., Galynsky V. M. Calculation method for Mie scattering coefficients by inhomogeneous bianisotropic spherical particle within the operator scattering theory. J. Belarus. State Univ. Phys. 2018. No. 1. P. 25–32 (in Russ.).
- Novitsky A. V., Alvarez Rodriguez R. J., Galynsky V. M. Spherical Bessel solutions of Maxwell’s equations in inhomogeneous rotationally symmetric media. J. Belarus. State Univ. Phys. 2017. No. 1. P. 52–60 (in Russ.).
- Novitsky A. V., Alvarez Rodriguez R. J., Galynsky V. M. Electromagnetic wave scattering by inhomogeneous cylindrically symmetric bianisotropic objects. J. Belarus. State Univ. Phys. 2017. No. 3. P. 41–49 (in Russ.).
- Novitsky A., Shalin A. S., Lavrinenko A. V. Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering. Phys. Rev. A. 2017. Vol. 95. Article ID: 053818. DOI: 10.1103/PhysRevA.95.053818.
- Novitsky A., Qiu C.-W. Pulling extremely anisotropic lossy particles using light without intensity gradient. Phys. Rev. A. 2014. Vol. 90. Article ID: 053815. DOI: 10.1103/PhysRevA.90.053815.
- Gao D., Novitsky A., Zhang T., et al. Unveiling the correlation between non-diffracting tractor beam and its singularity in Poynting vector. Laser & Photonics Rev. 2015. Vol. 9. P. 75–82. DOI: 10.1002/lpor.201400071.
Copyright (c) 2018 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)