Calculation of photon counting distribution in fluorescence intensity fluctuations registration systems

  • Viktor V. Skakun Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Vladimir V. Apanasovich Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

The study of the molecular composition of a substance based on the calculation of photon counting distribution is an effective method for analysing experimental data in fluorescence fluctuation spectroscopy. This method is non-invasive and makes it possible to resolve the processes of dimerisation of molecular complexes in living cells, which is in demand in biology, medicine and pharmaceuticals. Obtaining a theoretical photon counting distribution is a complicated task in both algorithmic and computational sense. In this paper, a comparative analysis of the three main methods for calculating photon counting distribution is carried out and an effective method for its calculating is proposed, which guarantees the correct calculation of photon counting distribution over the entire range of variation of the model parameters and the width of the counting time interval. The derivation of all expressions is given for the case of a Gaussian approximation of the brightness profile with correction for out-of-focus emission and normalisation to the first two moments of the profile. Other ways of approximating the brightness profile and normalising the estimated parameters can be made similarly. The proposed technique is implemented in FFS Data Processor software package, which is designed for a global analysis of photocounts in fluorescence fluctuation spectroscopy and allows efficient calculation of photon counting distribution in a wide range of estimated parameters.

Author Biographies

Viktor V. Skakun, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; doctoral student at the department of system analysis and computer simulation, faculty of radiophysics and computer technologies

Vladimir V. Apanasovich, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of system analysis and computer simulation, faculty of radiophysics and computer technologies

References

  1. Kitamura A, Kinjo M. State-of-the-art fluorescence fluctuation-based spectroscopic techniques for the study of protein aggregation. International Journal of Molecular Sciences. 2018;19(4):964. DOI: 10.3390/IJMS19040964.
  2. Elson EL, Magde D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers. 1974;13(1):1–27. DOI: 10.1002/BIP.1974.360130102.
  3. Yu Lan, Lei Yunze, Ma Ying, Liu Min, Zheng Juanjuan, Dan Dan, et al. A comprehensive review of fluorescence correlation spectroscopy. Frontiers of Physics. 2021;9:644450. DOI: 10.3389/FPHY.2021.644450.
  4. Nederveen-Schippers LM, Pathak P, Keizer-Gunnink I, Westphal AH, van Haastert PJM, Borst JW, et al. Combined FCS and PCH analysis to quantify protein dimerization in living cells. International Journal of Molecular Sciences. 2021;22(14):7300. DOI: 10.3390/IJMS22147300.
  5. Elson EL. Fluorescence correlation spectroscopy: past, present, future. Biophysical Journal. 2011;101(12):2855–2870. DOI: 10.1016/j.bpj.2011.11.012.
  6. Kask P, Palo K, Ullmann D, Gall K. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. PNAS. 1999;96(24):13756–13761. DOI: 10.1073/pnas.96.24.13756.
  7. Palo K, Mets Ü, Jäger S, Kask P, Gall K. Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness. Biophysical Journal. 2000;79(6):2858–2866. DOI: 10.1016/S0006-3495(00)76523-4.
  8. Chen Y, Müller JD, So PTC, Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophysical Journal. 1999;77(1):553–567. DOI: 10.1016/S0006-3495(99)76912-2.
  9. Huang B, Perroud TD, Zare RN. Photon counting histogram: one-photon excitation. ChemPhysChem. 2004;5(10):1523–1531. DOI: 10.1002/cphc.200400176.
  10. Perroud TD, Huang B, Zare RN. Effect of bin time on the photon counting histogram for one-photon excitation. ChemPhysChem. 2005;6(5):905–912. DOI: 10.1002/cphc.200400547.
  11. Müller JD. Cumulant analysis in fluorescence fluctuation spectroscopy. Biophysical Journal. 2004;86(6):3981–3992. DOI: 10.1529/biophysj.103.037887.
  12. Wu B, Singer RH, Mueller JD. Time-integrated fluorescence cumulant analysis and its application in living cells. In: Tetin SY, editor. Fluorescence fluctuation spectroscopy (FFS). Part A. [S. l.]: Academic Press; 2013. p. 99–119 (Methods in enzymology; volume 518). DOI: 10.1016/B978-0-12-388422-0.00005-4.
  13. Skakun VV, Novikov EG, Apanasovich TV, Apanasovich VV. Fluorescence cumulants analysis with non-ideal observation profiles. Methods and Applications in Fluorescence. 2015;3(4):045003. DOI: 10.1088/2050-6120/3/4/045003.
  14. Meng F, Ma H. A comparison between photon counting histogram and fluorescence intensity distribution analysis. The Journal of Physical Chemistry B. 2006;110(51):25716–25720. DOI: 10.1021/jp063845r.
  15. Skakun VV, Apanasovich VV. [Photon counting distribution analysis with brightness profile correction in single molecule fluctuation spectroscopy]. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 1, Fizika. Matematika. Informatika. 2008;2:31–35. Russian.
  16. Skakun VV, Novikov EG, Apanasovich VV, Tanke HJ, Deelder AM, Mayboroda OA. Initial guesses generation for fluorescence intensity distribution analysis. European Biophysics Journal. 2006;35(5):410–423. DOI: 10.1007/s00249-006-0048-8.
  17. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics. 1963;11(2):431–441. DOI: 10.1137/0111030.
  18. Skakun VV, Digris AV, Apanasovich VV. Global analysis of autocorrelation functions and photon counting distributions in fluorescence fluctuation spectroscopy. In: Engelborghs Y, Visser AJWG, editors. Fluorescence spectroscopy and microscopy: methods and protocols. [S. l.]: Humana Press; 2014. p. 719–741 (Methods in molecular biology; volume 1076). DOI: 10.1007/978-1-62703-649-8_33.
  19. Rigler R, Mets Ü, Widengren J, Kask P. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. European Biophysics Journal. 1993;22(3):169–175. DOI: 10.1007/BF00185777.
  20. Hess ST, Webb WW. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophysical Journal. 2002;83(4):2300–2317. DOI: 10.1016/S0006-3495(02)73990-8.
  21. Palo K, Mets Ü, Loorits V, Kask P. Calculation of photon-count number distributions via master equations. Biophysical Journal. 2006;90(6):2179–2191. DOI: 10.1529/biophysj.105.066084.
Published
2023-05-23
Keywords: fluorescence fluctuation spectroscopy, photon counting distribution, PCD, FIDA, PCH, generating function of the number of photocounts
How to Cite
Skakun, V. V., & Apanasovich, V. V. (2023). Calculation of photon counting distribution in fluorescence intensity fluctuations registration systems. Journal of the Belarusian State University. Physics, 2, 22-38. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5434