Light beams generated by oblate-tip axicon

  • Svetlana N. Kurilkina B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, Minsk 220072, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Rashed Yousef Abdulla Alhayyas Alblooshi Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Piotr I. Ropot B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, Minsk 220072, Belarus
  • Aliaksei M. Varanetski B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, Minsk 220072, Belarus

Abstract

The attention is focused on the real shape of the tip of the axicon, which is not sharp but rather oblate. The imperfect axicon with rounded tip approximated by a hyperboloid is considered, and the properties of the beam generated in far field behind such an axicon are analysed theoretically and experimentally. It has been demonstrated that if the axicon tip deviates in its apex from the ideal sharp tip in the range of tens of micrometers, the transversal intensity distribution is strongly oscillatory. Meanwhile, the ring width (area, within which normalised intensity is larger than 0.5) is smaller as compared with the case of ideal axicon. These oscillations result from the interference of parts of the incoming beam propagating through the round, lens-like axicon tip and the conical surface surrounding the tip. It is shown that the periodicity of oscillations depends on the parameter of bluntness: if this parameter increases the periodicity of oscillations (as well as the radius of the center of the light ring) decreases, and their amplitude increases. The method for determination of the bluntness of real axicon is proposed and tested. Obtained results can be useful for correction of characteristics of conventional axicons.

Author Biographies

Svetlana N. Kurilkina, B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, Minsk 220072, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; chief researcher at the center «Diagnostic systems», B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus,  and professor at the department of physical optics and applied computer science, faculty of physics, Belarusian State University
 

Rashed Yousef Abdulla Alhayyas Alblooshi, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

master’s degree student at the department of laser physics and spectroscopy, faculty of physics

Piotr I. Ropot, B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, Minsk 220072, Belarus

PhD (physics and mathematics), docent; deputy head of the center «Diagnostic systems»

Aliaksei M. Varanetski, B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Niezaliežnasci Avenue, Minsk 220072, Belarus

researcher at the center «Diagnostic systems»

References

  1. McLeod JH. The axicon: a new type of optical element. Journal of the Optical Society of America. 1954;44(8):592–597. DOI: 10.1364/JOSA.44.000592.
  2. Khonina SN, Kazanskiy NL, Khorin PA, Butt MA. Modern types of axicons: new functions and applications. Sensors. 2021;21(19):6690. DOI: 10.3390/s21196690.
  3. Fan Y, Cluzel B, Petit M, Le Roux X, Lupu A, de Lustrac A. 2D waveguided Bessel beam generated using integrated metasurface-based plasmonic axicon. ACS Applied Materials & Interfaces. 2020;12(18):21114–21119. DOI: 10.1021/acsami.0c03420.
  4. Ding Z, Ren H, Zhao Y, Nelson JS, Chen Z. High-resolution optical coherence tomography over a large depth range with an axicon lens. Optics Letters. 2002;27(4):243–245. DOI: 10.1364/OL.27.000243.
  5. Tsampoula X, Garcés-Chávez V, Comrie M, Stevenson DJ, Agate B, Brown CTA, et al. Femtosecond cellular transfection using a nondiffracting light beam. Applied Physics Letters. 2007;91(5):053902. DOI: 10.1063/1.2766835.
  6. Dufour P, Piché M, Koninck YD, McCarthy N. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Applied Optics. 2006;45(36):9246–9252. DOI: 10.1364/AO.45.009246.
  7. Čižmár T, Garcés-Chávez V, Dholakia K, Zemánek P. Optical conveyor belt for delivery of submicron objects. Applied Physics Letters. 2005;86(17):174101. DOI: 10.1063/1.1915543.
  8. Shao B, Esener SC, Nascimento JM, Botvinick EL, Berns MW. Dynamically adjustable annular laser trapping based on axicons. Applied Optics. 2006;45(25):6421–6428. DOI: 10.1364/AO.45.006421.
  9. Garcés-Chávez V, McGloin D, Melville H, Sibbett W, Dholakia K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature. 2002;419(6903):145–147. DOI: 10.1038/nature01007.
  10. Polesana P, Dubietis A, Porras MA, Kučinskas E, Faccio D, Couairon A, et al. Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity. Physical Review E. 2006;73(5):056612. DOI: 10.1103/PhysRevE.73.056612.
  11. Pyragaite V, Regelskis K, Smilgevicius V, Stabinis A. Self-action of Bessel light beams in medium with large nonlinearity. Optics Communications. 2006;257(1):139–145. DOI: 10.1016/j.optcom.2005.07.012.
  12. Arlt J, Dholakia K, Allen L, Padgett MJ. Efficiency of second-harmonic generation with Bessel beams. Physical Review A. 1999;60(3):2438. DOI: 10.1103/PhysRevA.60.2438.
  13. Polesana P, Franco M, Couairon A, Faccio D, Di Trapani P. Filamentation in Kerr media from pulsed Bessel beams. Physical Review A. 2008;77(4):043814. DOI: 10.1103/PhysRevA.77.043814.
  14. Dubietis A, Polesana P, Valiulis G, Stabinis A, Di Trapani P, Piskarskas A. Axial emission and spectral broadening in self-focusing of femtosecond Bessel beams. Optics Express. 2007;15(7):4168–4175. DOI: 10.1364/OE.15.004168.
  15. Polesana P, Couairon A, Faccio D, Parola A, Porras MA, Dubietis A, et al. Observation of conical waves in focusing, dispersive, and dissipative Kerr media. Physical Review Letters. 2007;99(22):223902. DOI: 10.1103/PhysRevLett.99.223902.
  16. Durfee CG, Milchberg HM. Light pipe for high intensity laser pulses. Physical Review Letters. 1993;71(15):2409. DOI: 10.1103/PhysRevLett.71.2409.
  17. Akturk S, Zhou B, Franco M, Couairon A, Mysyrowicz A. Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon. Optics Communications. 2009;282(1):129–134. DOI: 10.1016/j.optcom.2008.09.048.
  18. Polynkin P, Kolesik M, Roberts A, Faccio D, Di Trapani P, Moloney J. Generation of extended plasma channels in air using femtosecond Bessel beams. Optics Express. 2008;16(20):15733–15740. DOI: 10.1364/OE.16.015733.
  19. Roy G, Blanchard M, Tremblay R. High-pressure amplified stimulated emission effect in a N2 laser produced plasma with axicon lenses. Optics Communications. 1980;33(1):65–68. DOI: 10.1016/0030-4018(80)90094-2.
  20. Sochacki J, Kołodziejczyk A, Jaroszewicz Z, Bará S. Nonparaxial design of generalized axicons. Applied Optics. 1992;31(25):5326–5330. DOI: 10.1364/AO.31.005326.
  21. Soroko LM. Axicons and meso-optical imaging devices. In: Patorski K, Soroko LM, Bassett IM, Welford WT, Winston R, Mihalache D, et al. Progress in optics. Volume 27. Wolf E, editor. Amsterdam: North-Holland; 1989. p. 109–160. DOI: 10.1016/S0079-6638(08)70085-4.
  22. Dutta R, Saastamoinen K, Turunen J, FribergAT. Broadband spatiotemporal axicon fields. Optics Express. 2014;22(21):25015–25026. DOI: 10.1364/OE.22.025015.
  23. Jaroszewicz Z, Burvall A, Friberg AT. Axicon – the most important optical element. Optics & Photonics News. 2005;16(4):34–39.
  24. Wang Y, Yan S, Friberg AT, Kuebel D, Visser TD. Electromagnetic diffraction theory of refractive axicon lenses. Journal of the Optical Society of America A. 2017;34(7):1201–1211. DOI: 10.1364/JOSAA.34.001201.
  25. Ren O, Birngruber R. Axicon: a new laser beam delivery system for corneal surgery. IEEE Journal of Quantum Electronics. 1990;26(12):2305–2308. DOI: 10.1109/3.64369.
  26. Liu Xiaoqing, Xue Changxi. Intensity distribution of diffractive axicon with the optical angular spectrum theory. Optik. 2018;163:91–98. DOI: 10.1016/j.ijleo.2018.02.089.
  27. Durnin J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Physical Review Letters. 1987;58(15):1499. DOI: 10.1103/PhysRevLett.58.1499.
  28. Schwarz S, Rung S, Esen C, Hellmann R. Fabrication of a high-quality axicon by femtosecond laser ablation and CO2 laser polishing for quasi-Bessel beam generation. Optics Express. 2018;26(18):23287–23294. DOI: 10.1364/OE.26.023287.
  29. Horváth ZL, Bor Z. Diffraction of short pulses with boundary diffraction wave theory. Physical Review E. 2001;63(2):026601. DOI: 10.1103/PhysRevE.63.026601.
  30. Akturk S, Zhou B, Pasquiou B, Franco M, Mysyrowicz A. Intensity distribution around the focal regions of real axicons. Optics Communications. 2008;281(17):4240–4244. DOI: 10.1016/j.optcom.2008.05.027.
  31. Dépret B, Verkerk P, Hennequin D. Characterization and modelling of the hollow beam produced by a real conical lens. Optics Communications. 2002;211(1–6):31–38. DOI: 10.1016/S0030-4018(02)01900-4.
  32. Brzobohatý O, Čižmár T, Zemánek P. High quality quasi-Bessel beam generated by round-tip axicon. Optics Express. 2008;16(17):12688–12700. DOI: 10.1364/OE.16.012688.
Published
2023-05-24
Keywords: axicon, Bessel beams, diffraction, interference, intensity of light
How to Cite
Kurilkina, S. N., Alblooshi, R. Y. A. A., Ropot, P. I., & Varanetski, A. M. (2023). Light beams generated by oblate-tip axicon. Journal of the Belarusian State University. Physics, 2, 14-21. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5520