Light propagation in a system of coupled optical liquid-crystal waveguides

  • Olga Sergeevna Kabanova Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Elena A. Melnikova Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

Abstract

Optical liquid crystal (LC) systems with spatial modulation of the refractive index are highly promising as a technological platform for the creation of modern photonic devices of the enhanced functionality. This paper presents a method to create a discrete LC waveguide structure with the electrically controlled depth of the refractive index modulation enabling the spatial control of light fields. Tuning of the optical parameters for the developed waveguide system has been realized on the basis of the electrooptical and nonlinear-optical response of the nematic LC medium. It has been established experimentally that in the case of a low-intensity light beam, polarized as an extraordinary wave, one can implement its guided propagation in the described system of electrically induced LC waveguides. It has been shown that the discrete diffraction mode realized for a high-intensity light beam in the system of coupled optical LC waveguides allows for redistribution of the luminous energy between the specified waveguide channels. 

Author Biographies

Olga Sergeevna Kabanova, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

junior researcher at the research laboratory of nonlinear optics and spectroscopy, faculty of physics

Elena A. Melnikova, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics), docent; associate professor at the department of laser physics and spectroscopy, faculty of physics

References

  1. Brzdakiewicz K. A., Karpierz M. A., Fratalocchi A., et al. Nematic liquid crystal waveguide arrays. Opto-Electron. Rev. 2005. Vol. 13, No. 2. P. 107–112.
  2. Fratalocchi A., Assanto G., Brzdąkiewicz K. A., et al. Discrete light propagation and self-trapping in liquid crystals. Opt. Express. 2005. Vol. 13, issue 6. P. 1808–1815. DOI: 10.1364/OPEX.13.001808.
  3. Fratalocchi A., Assanto G., Brzdakiewicz K. A., et al. Discrete light propagation and self-localization in voltage-controlled arrays of channel waveguides in undoped nematic liquid crystals. Mol. Cryst. Liq. Cryst. 2006. Vol. 453. P. 191–202. DOI: 10.1080/ 15421400600654033.
  4. Rutkowska K. A., Chychłowski M., Kwasny M., et al. Light propagation in periodic photonic structures formed by photo-orientation and photo-polymerization of nematic liquid crystals. Opto-Electron. Rev. 2017. Vol. 25, No. 2. P. 118–126.
  5. Assanto G., Fratalocchi A., Peccianti M. Spatial solitons in nematic liquid crystals: from bulk to discrete. Opt. Express. 2007. Vol. 15, No. 8. P. 5248–5259. DOI: 10.1364/OE.15.005248.
  6. Fratalocchi A., Assanto G., Brzdakiewicz K. A., et al. Discrete propagation and spatial solitons in nematic liquid crystals. Opt. Let. 2004. Vol. 29, No. 13. P. 1530–1532. DOI: 10.1364/OL.29.001530.
  7. Zografopoulos D. C., Asquini R., Kriezis E. E., et al. Guided-wave liquid crystal photonics. Lab. Chip. 2012. Vol. 12, No. 19. P. 3598–3610. DOI: 10.1039/C2LC40514H.
  8. Khoo I.-C. Liquid crystals. 2nd ed. Hoboken : John Wiley & Sons, 2007. DOI: 10.1002/0470084030.
  9. Tong X. C. Electro-optic waveguides. Adv. Mater. for Integr. Opt. waveguides. Cham : Springer, 2014. Vol. 46. P. 335–376. DOI: 10.1007/978-3-319-01550-7-8.
  10. Rushnova I. I., Melnikova E. A., Tolstik A. L. Formation, propagation, and interaction of nematicons. NPCS. 2017. Vol. 20, No. 1. P. 82–88.
  11. Kivshar Yr. S., Agrawal G. P. Optical solitons: from fibers to photonic crystals. San Diego : Academic Press, 2003.
  12. Beeckman J., Neyts K., Hutsebaut X., et al. Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells. Opt. Express. 2004. Vol. 12, No. 6. P. 1011–1018. DOI: 10.1364/OPEX.12.001011.
  13. Alberucci A., Assanto G. Modeling Nematicon Propagation. Mol. Cryst. Liq. Cryst. 2013. Vol. 572, No. 1. P. 2–12. DOI: 10.1080/15421406.2012.763018.
  14. Melnikova E. A., Kabanova O. S. Polarization-sensitive waveguide channels in nematic liquid crystals. Vestnik BGU. Ser. 1, Fiz. Mat. Inform. 2016. No. 2. P. 48–51 (in Russ.).
  15. Mahilny U. V., Stankevich A. I., Trofimova A. V., et al. Photosensitive polymers for liquid crystal alignment. Phys. Procedia. 2015. Vol. 73. P. 121–125. DOI: 10.1016/j.phpro.2015.09.131.
  16. Peccianti M., Assanto G. Nematicons. Phys. Rep. 2012. Vol. 516, No. 4/5. P. 147–208. DOI: 10.1016/j.physrep.2012.02.004.
Published
2018-04-29
Keywords: nematic liquid crystal, waveguide propagation, optical anisotropy, refractive index modulation
How to Cite
Kabanova, O. S., & Melnikova, E. A. (2018). Light propagation in a system of coupled optical liquid-crystal waveguides. Journal of the Belarusian State University. Physics, 1, 18-24. Retrieved from https://journals.bsu.by/index.php/physics/article/view/556