Calculation method for Mie scattering coefficients by inhomogeneous bianisotropic spherical particle within the operator scattering theory

  • Andrey V. Novitsky Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus; DTU Fotonik, Technical University of Denmark, 343 Ørsteds Plads, Kgs. Lyngby DK-2800, Denmark https://orcid.org/0000-0001-9553-7318
  • Richard J. Alvarez Rodriguez Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Vladimir M. Galynsky Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus http://orcid.org/0000-0002-9966-2105

Abstract

Calculation method for the Mie scattering coefficients by inhomogeneous bianisotropic spherical particles is developed. It exploits the scattering fields and integral representation of coefficients. It is shown that within the operator scattering theory the Mie coefficients are expressed by means of the wave impedance tensors in the particle and ambient medium. Using the Mie coefficients determined for the inhomogeneous anisotropic particle we study the existence conditions of directional (predominantly forward) electromagnetic radiation. Generalization of the methodology to the cases of multilayer and cylindrical particles is possible. 

Author Biographies

Andrey V. Novitsky, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus; DTU Fotonik, Technical University of Denmark, 343 Ørsteds Plads, Kgs. Lyngby DK-2800, Denmark

doctor of science (physics and mathematics), docent; professor at the department of theoretical physics and astrophysics, faculty of physics, Belarusian State University; senior researcher at the metamaterials group, DTU Fotonik, Technical University of Denmark

Richard J. Alvarez Rodriguez, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

postgraduate student at the department of theoretical physics and astrophysics, faculty of phy sics

Vladimir M. Galynsky, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics); associate professor at the department of theoretical physics and astrophysics, faculty of physics

References

  1. Bohren C. F., Huffman D. R. Absorption and scattering of light by small particles. New York : Wiley-Interscience Publications, 1983.
  2. Van de Hulst H. C. Light scattering by small particles. New York : Dover Publications, 1981.
  3. Hovenac E. A. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach. Appl. Opt. 1997. Vol. 30, issue 33. P. 4739–4746. DOI: 10.1364/AO.30.004739.
  4. Yu H., Shen J., Wei W. Geometrical optics approximation for light scattering by absorbing spherical particles. J. Quantitative Spect rosc. Radiat. Transf. 2009. Vol. 110, issue 13. P. 1178–1189. DOI: 10.1016/j.jqsrt.2009.03.025.
  5. Mengran Z., Qieni L., Hongxia Zh., et al. Coated sphere scattering by geometric optics approximation. J. Opt. Soc. A. 2014. Vol. 31, issue 10. P. 2160–2169. DOI: 10.1364/JOSAA.31.002160.
  6. Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik. 1908. Vol. 330, issue 3. S. 377–445. DOI: 10.1002/andp.19083300302/full.
  7. Tsang L., Kong J. A., Ding K.-H., et al. Scattering of electromagnetic waves: numerical simulations. New York : Wiley, 2000. DOI: 10.1002/0471224308.fmatter_indsub/summary.
  8. Waterman P. C. Matrix formulation of electromagnetic scattering. Proc. IEEE. 1965. Vol. 53, issue 8. P. 805–812. DOI: 10.1109/ PROC.1965.4058.
  9. Wriedt T. Using the T-matrix method for light scattering computationsby non-axisymmetric particles: superellipsoids and realistically shaped particles. Part. Part. Syst. Charact. 2002. Vol. 19, issue 4. P. 256–268. DOI: 10.1002/1521-4117(200208)19:4<256:: AID-PPSC256>3.0.CO;2-8.
  10. Mishchenko M. I., Travis L. D., Mackowski D. W. T-matrix method and its applications to electromagnetic scattering by particles: a current perspective. J. Quantitative Spectrosc. Radiat. Transf. 2010. Vol. 111, issue 11. P. 1700–1703. DOI: 10.1016/j.jqsrt. 2010.01.030.
  11. Wang J. J., Han Yi P., Wu Z. F., et al. T-matrix method for electromagnetic scattering by a general anisotropic particle. J. Quantitative Spectrosc. Radiat. Transf. 2015. Vol. 162. P. 66–76. DOI: 10.1016/j.jqsrt.2014.11.009.
  12. Novitsky A. V. Matrix approach for light scattering by bianisotropic cylindrical particles. J. Phys.: Condens. Matter. 2007. Vol. 19. Article ID: 086213. DOI: 10.1088/0953-8984/19/8/086213.
  13. Novitsky A. V., Barkovsky L. M. Matrix approach for light scattering from a multilayered rotationally symmetric bianisotropic sphere. Phys. Rev. A. 2008. Vol. 77, issue 3. Article ID: 033849. DOI: 10.1103/PhysRevA.77.033849.
  14. Novitsky A., Shalin A. S., Lavrinenko A. V. Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering. Phys. Rev. A. 2017. Vol. 95, issue 5. Article ID: 053818. DOI: 10.1103/PhysRevA.95.053818.
  15. Fu Y. H., Kuznetsov A. I., Miroshnichenko A. E., et al. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 2013. Vol. 4. Article ID: 1527. DOI: 10.1038/ncomms2538.
  16. Rodriguez S. R. K., Arango F. B., Steinbusch T. P., et al. Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles. Phys. Rev. Lett. 2014. Vol. 113, issue 24. Article ID: 247401. DOI: 10.1103/PhysRevLett.113.247401.
  17. Luk’yanchuk B. S., Voshchinnikov N. V., Paniagua-Domínguez R., et al. Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photonics. 2015. Vol. 2, issue 7. P. 993–999. DOI: 10.1021/acsphotonics.5b00261.
  18. Wang Z., An N., Shen F., et al. Enhanced forward scattering of ellipsoidal dielectric nanoparticles. Nanoscale Res. Lett. 2017. Vol. 12:58. DOI: 10.1186/s11671-016-1794-x.
  19. Terekhov P. D., Baryshnikova K. V., Shalin A. S., et al. Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution. Opt. Lett. 2017. Vol. 42, issue 4. P. 835–838. DOI: 10.1364/OL.42.000835.
  20. Barkovsky L. M., Furs A. N. [Operator methods of description of optical fields in complex media]. Minsk : Belorusskaya nauka, 2003 (in Russ.).
  21. Novitsky A. V., Alvarez Rodriguez R. J., Galynsky V. M. Spherical Bessel solutions of Maxwell’s equations in inhomogeneous rotationally symmetric media. J. Belarus. State Univ. Phys. 2017. No. 1. P. 52–60 (in Russ.).
  22. Kerker M., Wang D.-S., Giles C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 1983. Vol. 73, issue 6. P. 765–767. DOI: 10.1364/JOSA.73.000765.
  23. Geffrin J. M., García-Cámara B., Gómez-Medina R., et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 2012. Vol. 3. Article ID: 1171. DOI: 10.1038/ ncomms2167.
Published
2018-04-30
Keywords: electromagnetic waves, metamaterials, light scattering, Mie coefficients
Supporting Agencies The authors acknowledge financial support from the Belarusian Republican Foundation for Fundamental Research (grant No. F16R-049).
How to Cite
Novitsky, A. V., Rodriguez, R. J. A., & Galynsky, V. M. (2018). Calculation method for Mie scattering coefficients by inhomogeneous bianisotropic spherical particle within the operator scattering theory. Journal of the Belarusian State University. Physics, 1, 25-32. Retrieved from https://journals.bsu.by/index.php/physics/article/view/557