Formation of switchable liquid crystal diffraction gratings by polarisation holography

  • Yekatsiaryna P. Pantsialeyeva Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Olga S. Kabanova Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Elena A. Melnikova Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

Experimental results on realisation and optimisation of conditions for holographic and polarisation-holographic recording of surface anisotropy in thin films of light-sensitive azo dye AtA-2 in order to form electrically switchable diffraction structures in a layer of nematic liquid crystal are presented. The optimum duration of exposure of films of azo dye AtA-2 by an interference pattern of two coherent light beams that provides a maximum value of diffraction efficiency for diffraction orders m = –1 and m = +1 has been found. A possibility of creating switchable diffraction gratings with a spatial period of 1–7 µm and gratings with fork dislocation forming singular light beams (optical vortices) with a specified value of a topological charge is demonstrated. Experimental dependences of diffraction efficiency of diffraction orders m = –1 and m = +1 on the value of applied voltage are presented. The spatial distribution of light field of generated singular light beams has been investigated by optical interferometry technique, and their stability in the range of applied voltages on the cell of 0–10 V has been analysed. The results of the study are of interest in point of view of fabricating devices and systems for controlling the spatial, phase and polarisation structure of laser radiation.

Author Biographies

Yekatsiaryna P. Pantsialeyeva, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

master’s degree student at the department of laser physics and spectroscopy, faculty of physics

Olga S. Kabanova, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); associate professor at the department of higher mathematics and mathematical physics, faculty of physics

Elena A. Melnikova, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of laser physics and spectroscopy, faculty of physics

References

  1. Zuo Kai, Shi Yue, Luo Dan. A review of two-dimensional liquid crystal polarization gratings. Crystals. 2021;11(9):1015. DOI: 10.3390/cryst11091015.
  2. Huang Bing-Yau, Lin Tsung-Hsien, Jhuang Tian-Yi, Kuo Chie-Tong. Electrically tunable Fresnel lens in twisted-nematic liquid crystals fabricated by a Sagnac interferometer. Polymers. 2019;11(9):1448. DOI: 10.3390/polym11091448.
  3. Kawai K, Sasaki T, Noda K, Sakamoto M, Kawatsuki N, Ono H. Holographic binary grating liquid crystal cells fabricated by one-step exposure of photocrosslinkable polymer liquid crystalline alignment substrates to a polarization interference ultraviolet beam. Applied Optics. 2015;54(19):6010–6018. DOI: 10.1364/AO.54.006010.
  4. Nieborek M, Rutkowska K, Woliński TR, Bartosewicz B, Jankiewicz B, Szmigiel D, et al. Tunable polarization gratings based on nematic liquid crystal mixtures photoaligned with azo polymer-coated substrates. Crystals. 2020;10(9):768. DOI: 10.3390/cryst10090768.
  5. Rutkowska KA, Kozanecka-Szmigiel A. Design of tunable holographic liquid crystalline diffraction gratings. Sensors. 2020;20(23):6789. DOI: 10.3390/s20236789.
  6. Lee D, Lee H, Migara LK, Kwak K, Panov VP, Song J-K. Widely tunable optical vortex array generator based on grid patterned liquid crystal cell. Advanced Optical Materials. 2021;9(2):2001604. DOI: 10.1002/adom.202001604.
  7. Huang Shuan-Yu, Huang Bing-Yau, Kang Chi-Chung, Kuo Chie-Tong. Diffraction and polarization properties of electricallytunable nematic liquid crystal grating. Polymers. 2020;12(9):1929. DOI: 10.3390/polym12091929.
  8. Kazak AA, Kazak LA, Melnikova EA, Tolstic AL. [Diffraction liquid crystal elements for the formation of vortex light fields]. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 1, Fizika. Matematika. Informatika. 2011;1:3–6. Russian.
  9. Chen Peng, Lu Yan-Qing, Hu Wei. Beam shaping via photopatterned liquid crystals. Liquid Crystals. 2016;43(13–15):2051–2061. DOI: 10.1080/02678292.2016.1191685.
  10. Chigrinov VG, Kozenkov VM, Kwok H-S. Photoalignment of liquid crystalline materials: physics and applications. Chichester: John Wiley & Sons; 2008. XV, 231 p. DOI: 10.1002/9780470751800.
  11. Chigrinov V, Kudreyko A, Guo Q. Patterned photoalignment in thin films: physics and applications. Crystals. 2021;11(2):84. DOI: 10.3390/cryst11020084.
  12. Chigrinov V, Sun J, Wang X. Photoaligning and photopatterning: new LC technology. Crystals. 2020;10(4):323. DOI: 10.3390/cryst10040323.
  13. Kabanova OS, Rushnova II, Melnikova EA, Tolstik AL, Muravsky AlA, Murauski AnA, et al. Two-dimentional diffractive optical structure based on patterned photoalignment of polymerizable liquid crystal. Journal of the Belarusian State University. Physics. 2019;3:4–11. Russian. DOI: 10.33581/2520-2243-2019-3-4-11.
  14. Mikulich VS, Murawski AnA, Muravsky AlA, Agabekov VE. Influence of methyl substituents on azo-dye photoalignment in thin films. Journal of Applied Spectroscopy. 2016;83(1):115–120. DOI: 10.1007/s10812-016-0252-y.
  15. Crawford GP, Eakin JN, Radcliffe MD, Callan-Jones A, Pelcovits RA. Liquid-crystal diffraction gratings using polarization holography alignment techniques. Journal of Applied Physics. 2005;98(12):123102. DOI: 10.1063/1.2146075.
  16. Blinov LM. Elektro- i magnitooptika zhidkikh kristallov [Electro- and magnetooptics of liquid crystals]. Moscow: Nauka; 1978. 384 p. Russian.
  17. Palto SP, Blinov LM, Barnik MI, Lazarev VV, Umanskii BA, Shtykov NM. [Photonics of liquid-crystal structures. A review]. Kristallografiya. 2011;56(4):667–697. Russian.
Published
2023-05-25
Keywords: optical vortices, polarisation holography, diffraction, phase plates, azo dye, liquid crystals, photoalignment
Supporting Agencies The work was financially supported by the state program of scientific research «Convergence-2025».
How to Cite
Pantsialeyeva, Y. P., Kabanova, O. S., & Melnikova, E. A. (2023). Formation of switchable liquid crystal diffraction gratings by polarisation holography. Journal of the Belarusian State University. Physics, 2, 39-50. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5602