Effect of long-term and rapid thermal treatments on the formation of the aluminum – polysilicon interface

  • Uladzimir A. Pilipenka «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Natalya S. Kovalchuk «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus
  • Dmitry V. Zhyhulin «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus
  • Dmitry V. Shestovski «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus
  • Victor M. Anishchik Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Vladimir V. Ponariadov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

The influence of long-term and rapid thermal treatments on the formation of the aluminum – polysilicon interface on aluminum – polysilicon – silicon dioxide structures in order to study the ohmic contacts in the element base of integrated circuits are considered. The obtained structures were subjected to various thermal treatments: standard (long-term) thermal annealing (450 °С, 20 min, N2 environment) used to create ohmic contacts at the stage of integrated circuit manufacturing and rapid thermal annealing (450 °С, 7 s, Ar environment). It is established, that during long-term thermal treatment, polysilicon is completely dissolved in aluminum, followed by segregation in the form of separate acute-angled polysilicon conglomerates on the surface of silicon dioxide, which can lead to a complete failure of the integrated circuit. With rapid thermal treatment, this effect is not observed. Thus, when forming an ohmic aluminum – polysilicon contact at the stage of integrated circuit manufacturing, it is advisable to use rapid thermal treatment, which significantly reduces the dissolution of polysilicon in aluminum and thereby contributes to the formation of an ohmic contact.

Author Biographies

Uladzimir A. Pilipenka, «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

corresponding member of the National Academy of Sciences of Belarus, doctor of science (engineering), full professor; deputy director for scientific development at the state center «Belmicroanalysis», branch STC «Belmicrosystems», «Integral» – Holding Management Company, and professor at the department of semiconductor physics and nanoelectronics, faculty of physics, Belarusian State University

Natalya S. Kovalchuk, «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus

PhD (engineering), docent; deputy general director and chief engineer

Dmitry V. Zhyhulin, «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus

head of the sector of physical and technical analysis, state center «Belmicroanalysis», branch STC «Belmicrosystems»

Dmitry V. Shestovski, «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus

engineer-technologist at the department of advanced technological processes

Victor M. Anishchik, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of solid state physics and nanotechnologies, faculty of physics

Vladimir V. Ponariadov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; head of the training laboratory, department of solid state physics and nanotechnologies, faculty of physics

References

  1. Pilipenko VA. Bystrye obrabotki v tekhnologii SBIS [Rapid thermal treatments in VLSI technology]. Minsk: Publishing Center of the Belarusian State University; 2004. 531 p. Russian.
  2. Poate JM, Tu KN, Mayer JW, editors. Thin films: interdiffusion and reactions. New York: John Wiley and Sons; 1978. X, 578 p. Russian edition: Poate J, Tu K, Mayer J, editors. Tonkie plenki: vzaimnaya diffuziya i reaktsii. Moscow: Mir; 1982. 576 p.
  3. Mogab C, Frazer D, Fichtner W, Parrillo L, Marcus R, Steidel C, et al. Tekhnologiya SBIS. Kniga 2 [VLSI technology. Book 2]. Sze С, editor. Moscow: Mir; 1986. 453 p. Russian.
  4. Solodukha VA, Pilipenko VA, Gorushko VA. Rapid thermal treatment modes of the Pt – Si system for formation of platinum silicide. Doklady BGUIR. 2018;8:88–92. Russian.
  5. Solodukha VA, Pilipenko VA, Gorushko VA, Philipenya VA. The impact of formation modes of platinum silicide by the quick heat treatment on Schottky diodes parameters. Doklady BGUIR. 2019;1:62–67. Russian.
  6. Anishchik VM, Harushka VA, Pilipenka UA, Ponariadov VV, Saladukha VA. Conductivity of platinum silicide films formed with application of rapid thermal treatment. Journal of the Belarusian State University. Physics. 2019;1:27–31. Russian.
  7. Belyaev AE, Boltovets NS, Klad’ko VP, Safryuk-Romanenko NV, Lubchenko AI, Sheremet VN, et al. Features of the temperature dependence of the specific contact resistance of diffusion silicon structures Au – Ti – Pd – n+ – n-Si. Fizika i tekhnika poluprovodnikov. 2019;53(4):485–492. Russian. DOI: 10.21883/FTP.2019.04.47445.9012.
  8. Solodukha VA, Pilipenko VA, Gorushko VA, Komarov FF, Milchanin OV. Formation of platinum silicide layers during the rapid thermal processing of the platinum – silicon system: structural-phase changes. High Temperature Material Processes. 2019;23(3):195–208. DOI: 10.1615/HighTempMatProc.v23.i3.10.
  9. Solodukha VA, Pilipenko VA, Gorushko VA, Kupchishin AN, Komarov FF, Milchanin OV. Formation of platinum silicide during rapid thermal processing of the platinum – silicon system: microstructure and electrophysical characteristics. High Temperature Material Processes. 2019;23(3):255–273. DOI: 10.1615/HighTempMatProc.2019031214.
  10. Solovjov JaA, Pilipenko VA. Effect of rapid thermal treatment conditions on electrophysical properties of chromium thin films on silicon. Doklady BGUIR. 2019;7–8:157–164. Russian. DOI: 10.35596/1729-7648-2019-126-8-157-164.
  11. Solovjov JaA, Pilipenko VA. Effect of rapid thermal treatment temperature on electrophysical properties of nickel films on silicon. Doklady BGUIR. 2020;18(1):81–88. Russian. DOI: 10.35596/1729-7648-2020-18-1-81-88.
  12. Saladukha VA, Pilipenko VA, Komarov FF, Gorushko VA. Influence of time modes of thermal treatment on Pt – Si system microstructure. Doklady BGUIR. 2020;18(2):105–111. Russian. DOI: 10.35596/1729-7648-2020-18-2-105-111.
  13. Pilipenka UA, Komarov FF, Saladukha VA, Harushka VA. Structural-phase junctions in the system of Pt – Si during rapid thermal treatment. Doklady of the National Academy of Sciences of Belarus. 2020;64(2):238–244. Russian. DOI: 10.29235/1561-8323-2020-64-2-238-244.
  14. Saladukha VA, Pilipenko VA, Komarov FF, Gorushko VA. Electron-microscope investigations of the Pt – Si system during its rapid thermal treatment. Doklady BGUIR. 2020;18(3):88–96. Russian. DOI: 10.35596/1729-7648-2020-18-3-88-96.
  15. Solovjov JaA, Pilipenko VA, Gaiduk PI. Structure and morphology of CrSi2 layers formed by rapid thermal treatment. Doklady BGUIR. 2020;18(4):71–79. Russian. DOI: 10.35596/1729-7648-2020-18-4-71-79.
  16. Solovjov JaA, Pilipenko VA, Gaiduk PI. Chromium disilicide formation during rapid thermal treatment in thermal balance regime. Proceedings of Francisk Skorina Gomel State University. 2020;3:179–185. Russian.
  17. Pilipenko VA, Solovjov JaA, Gaiduk PI. Nickel silicide formation with rapid thermal treatment in the heat balance mode. Doklady of the National Academy of Sciences of Belarus. 2021;65(1):111–118. Russian. DOI: 0.29235/1561-8323-2021-65-1-111-118.
  18. Kuznetsova T, Lapitskaya V, Solovjov Ja, Chizhik S, Pilipenko V, Aizikovich S. Properties of CrSi2 layers obtained by rapid heat treatment of Cr film on silicon. Nanomaterials. 2021;11(7):1734. DOI: 10.3390/nano11071734.
  19. Dostanko AP, Avakov SM, Golosov DA, Emel’yanov VV, Zavadskii SM, Kolos VV, et al. Innovatsionnye tekhnologii i oborudovanie submikronnoi elektroniki [Innovative technologies and equipment of submicron electronics]. Dostanko AP, editor. Minsk: Belaruskaja navuka; 2020. 260 p. Russian.
  20. Pilipenko VA, Solodukha VA, Kovalchuk NS, Solovjov JaA, Shestovski DV, Zhyhulin DV. Thermal load influence during the formation of Al – Al contacts on the electrical parameters of the integrated circuits with aluminum – polysilicon contacts. Doklady BGUIR. 2022;20(7):20–27. Russian. DOI: 10.35596/1729-7648-2022-20-7-20-27.
Published
2023-05-29
Keywords: aluminum – polysilicon interface, ohmic contact, rapid thermal treatment, integrated circuit, scanning electron microscopy, energy dispersive microanalysis
How to Cite
Pilipenka, U. A., Kovalchuk, N. S., Zhyhulin, D. V., Shestovski, D. V., Anishchik, V. M., & Ponariadov, V. V. (2023). Effect of long-term and rapid thermal treatments on the formation of the aluminum – polysilicon interface. Journal of the Belarusian State University. Physics, 2, 51-57. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5603
Section
Semiconductor Physics and Engineering