Some aspects of primary black holes in the early Universe and inflationary cosmology

  • Alexander E. Shalyt-Margolin Institute for Nuclear Problems, Belarusian State University, 11 Babrujskaja Street, Minsk 220006, Belarus

Abstract

Primary black holes can arise in the early Universe irrespective of what cosmological scenario of its expansion (inflationary, cyclic or other) is realised. However, the very existence of these objects can change the basic parameters of the above scenario if they arise before the beginning of its realisation, i. e. in first moments after the Big Bang. Therefore, the investigation of the formation and evaporation of primary black holes is a powerful tool to study the processes in the early Universe, in particular, the gravitational collapse, various cosmological models, and also high energy physics. At present these black holes are studied most often within the semiclassical approximation, i. e. in the case when the secondary quantised fields of matter are considered against the classical space-time background. But since energies at which primary black holes arise often are close to Planckian energies, such consideration cannot be considered satisfactory, since in this case quantum-gravitational effects become essential. This paper demonstrates the ways to include the quantum-gravitational corrections generated by this effects in inflationary cosmological models if primary black holes arise in the preinflationary epoch. It is shown that, due to the validity of the generalised uncrtainty principle, these corrections may be calculated for all the fundamental inflationary parameters, specifically, for the scale factor, Hubble parameter, slow roll parameters, etc.

Author Biography

Alexander E. Shalyt-Margolin, Institute for Nuclear Problems, Belarusian State University, 11 Babrujskaja Street, Minsk 220006, Belarus

doctor of science (physics and mathematics); chief researcher at the laboratory of fundamental interactions

References

  1. Shalyt-Margolin A. The equivalence principle applicability boundaries, measurability, and UVD in QFT. Nonlinear Phenomena in Complex Systems. 2021;24(1):38–55. DOI: 10.33581/1561-4085-2021-24-1-38-55.
  2. Weinberg S. The quantum theory of fields. Cambridge: Cambridge University Press; 1995. 2 volumes.
  3. Shalyt-Margolin A. The quantum field theory boundaries applicability and black holes thermodynamics. International Journal of Theoretical Physics. 2021;60(5):1858–1869. DOI: 10.1007/s10773-021-04804-1.
  4. Shalyt-Margolin A. The discrete and continuous quantum field theories and natural ultraviolet cutting-off. Nonlinear Phenomena in Complex Systems. 2021;24(3):280–291. DOI: 10.33581/1561-4085-2021-24-3-280-291.
  5. Misner CW, Thorne KS, Wheeler JA. Gravitation. San Francisco: W. H. Freeman and Company; 1973. XXVII, 1278 p.
  6. Hawking SW. Spacetime foam. Nuclear Physics B. 1978;144(2–3):349–362. DOI: 10.1016/0550-3213(78)90375-9.
  7. Garay LJ. Spacetime foam as a quantum thermal bath. Physical Review Letters. 1998;80(12):2508. DOI: 10.1103/PhysRevLett.80.2508.
  8. Scardigli F. Black hole entropy: a spacetime foam approach. Classical and Quantum Gravity. 1997;14(7):1781–1793. DOI: 10.1088/0264-9381/14/7/014.
  9. Scardigli F. Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Physics Letters B. 1999;452(1–2):39–44. DOI: 10.1016/S0370-2693(99)00167-7.
  10. Scardigli F. Gravity coupling from micro-black holes. Nuclear Physics B: Proceedings Supplements. 2000;88(1–3):291–294. DOI: 10.1016/S0920-5632(00)00788-X.
  11. Green AM, Kavanagh BJ. Primordial black holes as a dark matter candidate. Journal of Physics G: Nuclear and Particle Physics. 2021;48(4):043001. DOI: 10.1088/1361-6471/abc534.
  12. Zel’dovich YaB, Novikov ID. The hypothesis of cores retarded during expansion and the hot cosmological model. Soviet Astronomy – AJ. 1967;10(4):602–603.
  13. Hawking S. Gravitationally collapsed objects of very low mass. Monthly Notices of the Royal Astronomical Society. 1971;152(1):75–78. DOI: 10.1093/mnras/152.1.75.
  14. Carr BJ, Hawking SW. Black holes in the early Universe. Monthly Notices of the Royal Astronomical Society. 1974;168(2):399–415. DOI: 10.1093/mnras/168.2.399.
  15. Carr BJ. The primordial black hole mass spectrum. The Astrophysical Journal. 1975;201:1–19. DOI: 10.1086/153853.
  16. Carr BJ. Primordial black holes as a probe of cosmology and high energy physics. In: Giulini DJW, Kiefer C, Lämmerzahl C, editors. Quantum gravity: from theory to experimental search. Berlin: Springer-Verlag; 2003. p. 301–321 (Lecture notes in physics; volume 631). DOI: 10.1007/978-3-540-45230-0_7.
  17. Carr BJ. Primordial black holes – recent developments. In: Chen P, Bloom E, Madejski G, Patrosian V, editors. Proceedings of the 22nd Texas symposium on relativistic astrophysics at Stanford University; 2004 December 13–17; Stanford, USA. [S. l.]: [s. n.]; 2004. p. 89–100.
  18. Calmet X, Carr B, Winstanley E. Quantum black holes. Heidelberg: Springer; 2014. XI, 104 p. (SpringerBriefs in physics). DOI: 10.1007/978-3-642-38939-9.
  19. Hawking SW. Particle creation by black holes. Communications in Mathematical Physics. 1975;43(3):199–220. DOI: 10.1007/BF02345020.
  20. ’t Hooft G, Giddings SB, Rovelli C, Nicolini P, Mureika J, Kaminski M, et al. Panel discussion, «The duel»: the good, the bad, and the ugly of gravity and information. In: Nicolini P, Kaminski M, Mureika J, Bleicher M, editors. 2nd Karl Schwarzschild meeting on gravitational physics; 2015 July 20–24; Frankfurt am Main, Germany. Cham: Springer; 2018. p. 13–35 (Springer proceedings in physics; volume 208). DOI: 10.1007/978-3-319-94256-8_2.
  21. Adler RJ, Santiago DI. On gravity and the uncertainty principle. Modern Physics Letters A. 1999;14(20):1371–1378. DOI: 10.1142/s0217732399001462.
  22. Tawfik A, Diab A. Generalized uncertainty principle: approaches and applications. International Journal of Modern Physics D. 2014;23(12):1430025. DOI: 10.1142/S0218271814300250.
  23. Nouicer K. Quantum-corrected black hole thermodynamics to all orders in the Planck length. Physics Letters B. 2007;646(2–3):63–71. DOI: 10.1016/j.physletb.2006.12.072.
  24. Frolov VP, Novikov ID. Black hole physics: basic concepts and new developments. Dordrecht: Kluwer Academic Publishers; 1998. XXI, 770 p. (Fundamental theories of physics; volume 96).
  25. Shalyt-Margolin AE, Suarez JG. Quantum mechanics at Planck’s scale and density matrix. International Journal of Modern Physics D. 2003;12(7):1265–1278. DOI: 10.1142/s0218271803003700.
  26. Shalyt-Margolin AE, Tregubovich AYa. Deformed density matrix and generalized uncertainty relation in thermodynamics. Modern Physics Letters A. 2004;19(1):71–81. DOI: 10.1142/s0217732304012812.
  27. Wald RM. General relativity. Chicago: University of Chicago Press; 1984. XIII, 491 p. DOI: 10.7208/chicago/9780226870373.001.0001.
  28. Nariai H. On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case. Science Reports of the Tohoku University. Series 1, Physics, chemistry, astronomy. 1950;34(3):160–167.
  29. Nariai H. On a new cosmological solution of Einstein’s field equations of gravitation. Science Reports of the Tohoku University. Series 1, Physics, chemistry, astronomy. 1951;35(1):62–67.
  30. Prokopec T, Reska P. Scalar cosmological perturbations from inflationary black holes. Journal of Cosmology and Astroparticle Physics. 2011;3:050. DOI: 10.1088/1475-7516/2011/03/050.
  31. Adler RJ, Chen P, Santiago DI. The generalized uncertainty principle and black hole remnants. General Relativity and Gravitation. 2001;33(12):2101–2108. DOI: 10.1023/A:1015281430411.
  32. Gorbunov DS, Rubakov VA. Introduction to the theory of the early Universe: cosmological perturbations and inflationary theory. Singapore: World Scientific; 2011. XIII, 489 p.
  33. Bekenstein JD. Black holes and entropy. Physical Review D. 1973;7(8):2333. DOI: 10.1103/PhysRevD.7.2333.
  34. Bekenstein JD. Black holes and the second law. Lettere al Nuovo Cimento. 1972;4(15):737–740. DOI: 10.1007/BF02757029.
  35. Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE. On the Lambert W function. Advances in Computational Mathematics. 1996;5:329–359. DOI: 10.1007/BF02124750.
  36. Faddeev LD. [Mathematical view on the evolution of physics]. Priroda. 1989;5:11–16. Russian.
  37. Weinberg S. Cosmology. Oxford: Oxford University Press; 2008. XVII, 593 p.
  38. Mukhanov V. Physical foundations of cosmology. Cambridge: Cambridge University Press; 2005. XX, 421 p. DOI: 10.1017/CBO9780511790553.
Published
2023-05-29
Keywords: primary black holes, inflationary cosmology, quantum-gravitational corrections
Supporting Agencies The author would like to thank the reviewer for his important comments on the text of the article.
How to Cite
Shalyt-Margolin, A. E. (2023). Some aspects of primary black holes in the early Universe and inflationary cosmology. Journal of the Belarusian State University. Physics, 2, 74-81. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5605