Determination of heat transfer parameters in absorbing thin films on substrate by the transient grating method

  • Evgeniy V. Ivakin Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Alexei L. Tolstik Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

Advantages of the transient grating method for contactless study of thin-film materials have been demonstrated. Thin films of diamond-like carbon and thermoelectric lead telluride have been studied. Transient gratings are formed on a surface of film due to absorption of nanosecond pulsed laser radiation. The diffracted signal character enables the heat transfer parameters and thermal diffusivity determination. The transient grating period increase leads to transfer from thermal diffusivity of thin film measurements to its effective value determination, with a contribution made by the substrate. At large period of the grating one can realise measurements of thermal diffusivity of the substrate itself. Acoustic wave excitation in the near-surface thin layer of the air, which earlier has been considered as a factor distorting the diffracted signal dynamics is of special interest. In this case there is a possibility to temperature measurement of the film when it is heated by a laser pulse.

Author Biographies

Evgeniy V. Ivakin, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics); chief researcher at the department of laser physics and spectroscopy, faculty of physics

Alexei L. Tolstik, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; head of the department of laser physics and spectroscopy, faculty of physics

References

  1. Jackson WB, Amer NM, Boccara AC, Fournier D. Photothermal deflection spectroscopy and detection. Applied Optics. 1981;20(8):1333–1344. DOI: 10.1364/AO.20.001333.
  2. Rosencwaig A, Opsal J, Smith WL, Willenborg DL. Detection of thermal waves through optical reflectance. Applied Physics Letters. 1985;46(11):1013–1015. DOI: 10.1063/1.95794.
  3. Miklos A, Lorincz A. Determination of thermal transport properties of thin metal films from pulsed thermoreflectance measurements in the picosecond regime. Applied Physics B. 1989;48(3):261–267. DOI: 10.1007/BF00694357.
  4. Magunov AN. Lazernaya termometriya tverdykh tel [Laser thermometry of solids]. Moscow: Fizmatlit; 2002. 222 p. Russian.
  5. Tolstik AL, Dadenkov IG, Stankevich AA. Spatial modulation spectroscopy of semiconductors using dynamic gratings. Journal of Optical Technology. 2022;89(5):250–254. DOI: 10.1364/JOT.89.000250.
  6. Tolstik AL, Ivakin EV, Dadenkov IG. Light beam transformation and material diagnostics by dynamic holography method. Zhurnal prikladnoii spektroskopii. 2023;90(2):316–323. DOI: 10.47612/0514-7506-2023-90-2-316-323. Russian.
  7. Ivakin EV. Laser diffraction relaxmeter for studying photoexcitation kinetics in condensed media. Journal of Optical Technology. 2000;67(11):951–954. DOI: 10.1364/JOT.67.000951.
  8. Ivakin EV, Kisialiou IG, Antipov OL. Laser ceramics Tm : Lu2O3. Thermal, thermo-optical, and spectroscopic properties. Optical Materials. 2013;35(3):499–503. DOI: 10.1016/j.optmat.2012.10.002.
  9. Ivakin EV, Tolstik AL, Gorbach DV, Stankevich AA. Investigation of heat transfer of bulk and thin-film PbInTe samples by the method of dynamic gratings. Journal of Engineering Physics and Thermophysics. 2022;95(4):1026–1030. DOI: 10.1007/s10891-022-02568-x.
  10. Kading OW, Skurk H, Matthias E. Thermal diffusivities of thin films measured by transient thermal gratings. Journal de Physique IV. 1994;4:619–622. DOI: 10.1051/jp4:19947146.
  11. Rogers JA, Yang Y, Nelson KA. Elastic modulus and in-plane thermal diffusivity measurements in thin polyimide films using symmetry-selective real-time impulsive stimulated thermal scattering. Applied Physics A. 1994;58(5):532–534. DOI: 10.1007/BF00332448.
  12. Kading OW, Skurk H, Mazhev AA, Matthias E. Transient thermal gratings at surfaces for thermal characterization of bulk materials and thin films. Applied Physics A. 1995;61(3):253–261. DOI: 10.1007/BF01538190.
  13. Shamsa M, Liu WL, Balandin AA, Casiraghi C, Milne WI, Ferrari AC. Thermal conductivity of diamond-like carbon films. Applied Physics Letters. 2006;89(16):161921. DOI: 10.1063/1.2362601.
  14. Yun SI, Oh K-D, Ryu K-S, Kim C-G, Park HL, Seo HJ, et al. Photothermal probe beam deflection measurement of thermal diffusivity of atmospheric air. Applied Physics B. 1986;40(2):95–98. DOI: 10.1007/BF00694781.
  15. Parashchuk T, Dashevsky Z, Wojciechowski K. Feasibility of a high stable PbTe : In semiconductor for thermoelectric energy applications. Journal of Applied Physics. 2019;125(24):245103. DOI: 10.1063/1.5106422.
  16. Vargaftik NB. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei [Handbook on thermophysical properties of gases and liquids]. Moscow: Gosudarstvennoe izdatel’stvo fiziko-matematicheskoi literatury; 1963. 707 p. Russian.
  17. Collier RJ, Burckhardt CB, Lin LH. Optical holography. New York: Academic Press; 1971. 605 p.
Published
2023-10-28
Keywords: holography, transient grating, heat transfer, thermal diffusivity, diamond-like carbon, lead telluride, thermoelectric, acoustic wave
How to Cite
Ivakin, E. V., & Tolstik, A. L. (2023). Determination of heat transfer parameters in absorbing thin films on substrate by the transient grating method. Journal of the Belarusian State University. Physics, 3, 4-9. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5660