Two schemes for producing molecular ions on a bent graphene layers

  • Nikolai A. Poklonski Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus https://orcid.org/0000-0002-0799-6950
  • Sergey V. Ratkevich Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Sergey A. Vyrko Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Anatoli T. Vlassov Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

A brief review of methods for producing molecular ions is given, on the basis of which two original schemes for generation of a flow of negatively and positively charged ions from a flow of electrically neutral molecules scattered on electrically conductive bent graphene layers are proposed. When graphene layers are bent, the densities of p-electrons of carbon atoms are redistributed, and a deformation-induced electric dipole moment appears in the direction perpendicular to the bent surface. The presented schemes differ in the mutual arrangement of the bent graphene layers relative to the flow of molecules. Quantum chemical calculations using the PM7 semiempirical method provide estimates of the electron affinity and ionisation energy (potential) of a number of molecules (C60, O2, H2O, CO2, etc.) suitable for production of molecular ions from them according to the proposed schemes. If a molecule is scattered on a negatively charged graphene side, then due to the transfer of an electron from graphene to the molecule, the molecule acquires a negative charge. If a molecule is scattered on a positively charged graphene side, then due to the transfer of an electron from the molecule to graphene, the molecule acquires a positive charge. To obtain molecular ions, it is necessary to select molecules with values of electron affinity (to obtain negative ions) or ionisation energy (to obtain positive ions) close to the work function of graphene (≈ 4.3 eV).

Author Biographies

Nikolai A. Poklonski, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), corresponding member of the National Academy of Sciences of Belarus, full professor; professor at the department of semiconductor physics and nanoelectronics, faculty of physics

Sergey V. Ratkevich, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

senior lecturer at the department of physics and aerospace technologies, faculty of radiophysics and computer technologies

Sergey A. Vyrko, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); senior researcher at the laboratory of physics of electronic materials, department of semiconductor physics and nanoelectronics, faculty of physics

Anatoli T. Vlassov, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); leading researcher at the laboratory of physics of electronic materials, department of semiconductor physics and nanoelectronics, faculty of physics

References

  1. Dudnikov VG. Surface-plasma method for the production of negative ion beams. Physics – Uspekhi. 2019;62(12):1233–1267. DOI: 10.3367/UFNe.2019.04.038558.
  2. Gainullin IK. Resonant charge transfer during ion scattering on metallic surfaces. Physics – Uspekhi. 2020;63(9):888–906. DOI: 10.3367/UFNe.2019.11.038691.
  3. Ieshkin AE, Kushkina KD, Kireev DS, Ermakov YuA, Chernysh VS. Polishing superhard material surfaces with gas-cluster ion beams. Technical Physics Letters. 2017;43(1):95–97. DOI: 10.1134/S1063785017010205.
  4. Lukin VG, Khvostenko OG. Desorption processes in the measurement of weak currents. Physics – Uspekhi. 2020;63(5):487–499. DOI: 10.3367/UFNe.2019.07.038615.
  5. Kiselev VA. Covalent-ionic transition, and activity of metal-semiconductor interfaces. Soviet Physics, Solid State. 1991;33(10):1734–1737.
  6. Davydov SYu. Dependence of the electronic structure of a graphene nanoribbon on the concentration of adsorbed particles. Technical Physics Letters. 2020;46(7):625–628. DOI: 10.1134/S1063785020070068.
  7. Babenko PYu, Zinoviev AN, Mikhailov VS, Tensin DS, Shergin AP. The ion-solid interaction potential determination from the backscattered particles spectra. Technical Physics Letters. 2022;48(7):50–53. DOI: 10.21883/TPL.2022.07.54039.19231.
  8. Konstantinov OV, Dymnikov VD, Mittsev MA. Theory of catalytic dissociation of hydrogen atoms on a metal surface. Semiconductors. 2008;42(8):931–933. DOI: 10.1134/S1063782608080101.
  9. McKenzie S, Kang HC. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions. Physical Chemistry Chemical Physics. 2014;16(47):26004–26015. DOI: 10.1039/C4CP02575J.
  10. Ahmadpoor F, Sharma P. Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale. 2015;7(40):16555–16570. DOI: 10.1039/C5NR04722F.
  11. Dumitrică T, Landis CM, Yakobson BI. Curvature-induced polarization in carbon nanoshells. Chemical Physics Letters. 2002;360(1–2):182–188. DOI: 10.1016/S0009-2614(02)00820-5.
  12. Poklonski NA, Ratkevich SV, Vyrko SA, Vlassov AT, Hieu NN. Quantum chemical calculation of reactions involving C20, C60, graphene and H2O. International Journal of Nanoscience. 2019;18(3–4):1940008. DOI: 10.1142/S0219581X19400088.
  13. Lebedeva IV, Popov AM, Knizhnik AA, Lozovik YE, Poklonski NA, Siahlo AI, et al. Tunneling conductance of telescopic contacts between graphene layers with and without dielectric spacer. Computational Materials Science. 2015;109:240–247. DOI: 10.1016/j.commatsci.2015.07.006.
  14. Xiang Q, Yu J. Graphene-based photocatalysts for hydrogen generation. The Journal of Physical Chemistry Letters. 2013;4(5):753–759. DOI: 10.1021/jz302048d.
  15. Kamat PV, Bisquert J. Solar fuels. Photocatalytic hydrogen generation. The Journal of Physical Chemistry C. 2013;117(29):14873–14875. DOI: 10.1021/jp406523w.
  16. Yakovlev AG, Shuvalov VA. Physical stage of photosynthesis charge separation. Physics – Uspekhi. 2016;59(6):531–557. DOI: 10.3367/UFNe.2016.02.037701.
  17. Poklonski NA, Ratkevich SV, Vyrko SA, Vlassov AT. Thermochemistry modeling of hydrogen and water influence on C20 cage decay. In: Burakov VS, Filatova II, Usachonak MS, editors. Plasma physics and plasma technology (PPPT-8). Contributed papers of VIII International conference; 2015 September 14–18; Minsk, Belarus. Volume 1. Minsk: Kovcheg; 2015. p. 177–180.
  18. Poklonski NA, Ratkevich SV, Vyrko SA, Vlassov AT. [Quantum-chemical calculation of the reactions of fullerenes C20 and C60 with molecules of hydrogen, chlorine and water]. In: Vityaz’ PA, Penyaz’kov OG, Filatov SA, Shpilevskii EM, editors. Nanostruktury v kondensirovannykh sredakh [Nanostructures in condensed matter]. Minsk: [s. n.]; 2016. p. 477–483. Russian.
  19. Mazarov P, Dudnikov VG, Tolstoguzov AB. Electrohydrodynamic emitters of ion beams. Physics – Uspekhi. 2020;63(12):1219–1255. DOI: 10.3367/UFNe.2020.09.038845.
  20. Kotelnikov IA, Astrelin VT. Theory of a plasma emitter of positive ions. Physics – Uspekhi. 2015;58(7):701–718. DOI: 10.3367/UFNe.0185.201507c.0753.
  21. Barengolts SA, Mesyats GA. Explosive emission processes in thermonuclear facilities with magnetic plasma confinement and in linear electron-positron colliders. Physics – Uspekhi. 2023;66(7):704–721. DOI: 10.3367/UFNe.2022.02.039163.
  22. Eidelman ED, Arkhipov AV. Field emission from carbon nanostructures: models and experiment. Physics – Uspekhi. 2020;63(7):648–667. DOI: 10.3367/UFNe.2019.06.038576.
  23. Poklonski NA, Siahlo AI, Vyrko SA, Ratkevich SV, Vlassov AT. Model of field electron emission from the edge of flat graphene into vacuum. Devices and Methods of Measurements. 2019;10(1):61–68. Russian. DOI: 10.21122/2220-9506-2019-10-1-61-68.
  24. Goryaev FF. [Single-electron charge exchange in collisions of fast ions with molecular hydrogen in the representation of the impact parameter]. Zhurnal eksperimental’noi i teoreticheskoi fiziki. 2023;164(3):349–364. Russian.
  25. Latypov ZZ. Possibility for separation of polarizable molecules using electric fields. Technical Physics. 2014;59(6):808–812. DOI: 10.1134/S1063784214060140.
  26. Gao X, Wang Y, Liu X, Chan T-L, Irle S, Zhao Y, et al. Regioselectivity control of graphene functionalization by ripples. Physical Chemistry Chemical Physics. 2011;13(43):19449–19453. DOI: 10.1039/C1CP22491C.
  27. Rut’kov EV, Afanas’eva EY, Gall NR. Graphene and graphite work function depending on layer number on Re. Diamond and Related Materials. 2020;101:107576. DOI: 10.1016/j.diamond.2019.107576.
  28. Klavsyuk AL, Saletsky AM. Formation and properties of metallic atomic contacts. Physics – Uspekhi. 2015;58(10):933–951. DOI: 10.3367/UFNe.0185.201510a.1009.
  29. Perrin ML, Frisenda R, Koole M, Seldenthuis JS, Gil JAC, Valkenier H, et al. Large negative differential conductance in single-molecule break junctions. Nature Nanotechnology. 2014;9(10):830–834. DOI: 10.1038/nnano.2014.177.
  30. Smirnov BM. The Sena effect. Physics – Uspekhi. 2008;51(3):291–293. DOI: 10.1070/PU2008v051n03ABEH006542.
  31. Massey HSW. Negative ions. 3rd edition. Cambridge: Cambridge University Press; 1976. XVIII, 742 p. (Cambridge monographs on physics).
  32. Buchel’nikova NS. [Negative ions]. Uspekhi fizicheskikh nauk. 1958;65(3):351–385. Russian. DOI: 10.3367/UFNr.0065.195807a.0351.
  33. Linstrom PJ, Mallard WG, editors. NIST Chemistry WebBook: NIST standard reference database number 69 [Internet]. Gaithersburg: National Institute of Standards and Technology. [1996]– . Gas phase ion energetics data; [updated 2023 January; cited 2023 September 7]. Available from: https://webbook.nist.gov/chemistry/.
  34. Li J, Niesner D, Fauster T. Negative electron affinity of adamantane on Cu (111). Journal of Physics: Condensed Matter. 2021;33(13):135001. DOI: 10.1088/1361-648X/abd99a.
  35. Stewart JJP. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling. 2013;19(1):1–32. DOI: 10.1007/s00894-012-1667-x.
Published
2023-10-28
Keywords: bent graphene layer, π-electrons, molecule, molecular ion, ionisation, electron affinity
Supporting Agencies This work was supported by the Belarusian Republican Foundation for Fundamental Research (grant No. F23RNF-049).
How to Cite
Poklonski, N. A., Ratkevich, S. V., Vyrko, S. A., & Vlassov, A. T. (2023). Two schemes for producing molecular ions on a bent graphene layers. Journal of the Belarusian State University. Physics, 3, 57-64. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5710