One-dimensional generalised Coulomb problem

  • Аlexandre N. Lavrenov Belarusian State Pedagogical University named after Maxim Tank, 18 Savieckaja Street, Minsk 220030, Belarus
  • Ivan A. Lavrenov Octonion Technology, 25 Janki Kupaly Street, Minsk 220030, Belarus

Abstract

The quantum-mechanical Coulomb problem, complicated in two directions, is considered in this article. The first generalisation is associated with the transition from Euclidean space to one-dimensional Cayley – Klein geometries, and the second one is connected with the addition of a singular term g/x2 to the Coulomb potential. It can be considered as a Calogerо – Sutherland potential, which is used to describe anyons, magnetic monopoles, dyons, etc. In addition to the methodological aspect, the problem under consideration will also be useful as a special case of the so-called coordinate-dependent mass model when describing nanostructures in quantum dots or on a plane, metamaterials and astronomical objects in strong magnetic fields. On the positive coordinate semiaxis, it turns into a certain generalisation of the model with the Kratzer potential, which is used to describe molecular energy and structure, interactions between molecules and non-bounded atoms. Using the factorisation method, the energy spectrum and wave functions of stationary states are found, having the curvature of space as a parameter. The formula for energy levels contains two terms. The first term gives the energy spectrum of the one-dimensional Coulomb problem, and the second term explicitly depends on the presence of curvature and is responsible for the spectrum of the particle on the circle S1(j). The coupling constant g of Calogero – Sutherland potential is non-linearly contained in both terms through a variable β0 (g2 = β00 - 1)) representing an additive correction to the number of the energy level. In the special case of a purely Coulomb field, the results obtained coincide with the results published earlier.

Author Biographies

Аlexandre N. Lavrenov, Belarusian State Pedagogical University named after Maxim Tank, 18 Savieckaja Street, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of informatics and methods of teaching informatics, faculty of physics and mathematics

Ivan A. Lavrenov, Octonion Technology, 25 Janki Kupaly Street, Minsk 220030, Belarus

leading specialist

References

  1. Dong S-H. Factorization method in quantum mechanics. Dordrecht: Springer; 2007. XIX, 297 p. (Fundamental theories of physics; volume 150). DOI: 10.1007/978-1-4020-5796-0.
  2. Zwanziger D. Exactly soluble nonrelativistic model of particles with both electric and magnetic charges. Physical Review. 1968;176(5):1480–1488. DOI: 10.1103/PhysRev.176.1480.
  3. McIntosh HV, Cisneros A. Degeneracy in the presence of a magnetic monopole. Journal of Mathematical Physics. 1970;11(3):896–916. DOI: 10.1063/1.1665227.
  4. Trugenberger CA. Magnetic monopoles, dyons and confinement in quantum matter. Condensed Matter. 2023;8(1):2. DOI: 10.3390/condmat8010002.
  5. Bulygin II, Sazhin MV, Sazhina OS. Theory of gravitational lensing on a curved cosmic string. The European Physical Journal C. 2023;83:844. DOI: 10.1140/epjc/s10052-023-11994-x.
  6. Borisov AB, Kiselev VV. Dvumernye i trekhmernye topologicheskie defekty, solitony i tekstury v magnetikakh [Two-dimensional and three-dimensional topological defects, solitons and textures in magnets]. Moscow: Fizmatlit; 2022. 455 p. Russian.
  7. Klumov BA. Universal structural properties of three-dimensional and two-dimensional melts. Uspekhi fizicheskikh nauk. 2023;193(3):305–330. Russian. DOI: 10.3367/UFNr.2022.09.039237.
  8. Giamarchi T. One-dimensional physics in the 21st century. Comptes Rendus Physique. 2016;17(3–4):322–331. DOI: 10.1016/j.crhy.2015.11.009.
  9. Mustafa O. Confined Klein – Gordon oscillators in Minkowski spacetime and a pseudo-Minkowski spacetime with a space-like dislocation: PDM KG-oscillators, isospectrality and invariance. Annals of Physics. 2022;446:169124. DOI: 10.1016/j.aop.2022.169124.
  10. Pont FM, Osenda O, Serra P. Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model. Journal of Physics A: Mathematical and Theoretical. 2018;51(19):195303. DOI: 10.1088/1751-8121/aab85e.
  11. Hartmann RR, Portnoi ME. Pair states in one-dimensional Dirac systems. Physical Review A. 2017;95(6):062110. DOI: 10.1103/PhysRevA.95.062110.
  12. Yao H, Pizzino L, Giamarchi T. Strongly-interacting bosons at 2D – 1D dimensional crossover. SciPost Physics. 2023;15(2):050. DOI: 10.21468/SciPostPhys.15.2.050.
  13. Cai Zhigang, Wang Yi-Xiang. Magnetic field driven Lifshitz transition and one-dimensional Weyl nodes in three-dimensional pentatellurides. Physical Review B. 2023;108(15):155202. DOI: 10.1103/PhysRevB.108.155202.
  14. Gromov NA, Kuratov VV. Quantum mechanics on one-dimensional Cayley – Klein geometries. Proceedings of the Komi Science Centre, Ural Branch, Russian Academy of Sciences. 2017;2:5–11. Russian.
  15. Cariñena JF, Rañada MF, Santander M. The quantum free particle on spherical and hyperbolic spaces: a curvature dependent approach. Journal of Mathematical Physics. 2011;52(7):072104. DOI: 10.1063/1.3610674.
  16. Cariñena JF, Rañada MF, Santander M. Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere S 2 and the hyperbolic plane H 2. Journal of Mathematical Physics. 2005;46(5):052702. DOI: 10.1063/1.1893214.
  17. Mardoyan LG, Pogosyan GS, Sissakian AN. [Coulomb problem in a one-dimensional space with constant positive curvature]. Teoreticheskaya i matematicheskaya fizika. 2003;135(3):427–433. Russian. DOI: 10.4213/tmf198.
  18. Burdík Č, Pogosyan GS. Two exactly-solvable problems in one-dimensional hyperbolic space. In: Doebner H-D, Dobrev VK, editors. Lie theory and its applications in physics V. Proceedings of the Fifth International workshop; 2003 June 16–22; Varna, Bulgaria. Singapore: World Scientific; 2004. p. 294–300. DOI: 10.1142/9789812702562_0018.
  19. Nersessian A, Pogosyan G. Relation of the oscillator and Coulomb systems on spheres and pseudospheres. Physical Review A. 2001;63(2):020103(R). DOI: 10.1103/PhysRevA.63.020103.
  20. Schrödinger E. A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proceedings of the Royal Irish Academy. Section A, Mathematical and Physical Sciences. 1940;46:9–16.
  21. Infeld L, Schild A. A note on the Kepler problem in a space of constant negative curvature. Physical Review. 1945;67(3–4):121–122. DOI: 10.1103/PhysRev.67.121.
  22. Higgs PW. Dynamical symmetries in a spherical geometry. I. Journal of Physics A: Mathematical and General. 1979;12(3):309–323. DOI: 10.1088/0305-4470/12/3/006.
  23. Kurochkin YuA, Otchik VS. [Analog of the Runge – Lenz vector and energy spectrum in the Kepler problem on a three-dimensional sphere]. Doklady Akademii nauk Belorusskoi SSR. 1979;23(11):987–990. Russian.
  24. Bogush AA, Kurochkin YuA, Otchik VS. [The quantum-mechanical Kepler problem in three-dimensional Lobachevsky space]. Doklady Akademii nauk Belorusskoi SSR. 1980;24(1):19–22. Russian.
Published
2024-01-18
Keywords: generalised Coulomb problem, curvature, space of constant curvature, Cayley – Klein geometries, factorisation method, one-dimensional space
How to Cite
LavrenovА. N., & Lavrenov, I. A. (2024). One-dimensional generalised Coulomb problem. Journal of the Belarusian State University. Physics, 1, 75-82. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5882