Modelling thermal effects on polarisation switching in surface-emitting semiconductor lasers

  • Leonid I. Burov Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Pavel M. Labatsevich Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

A phenomenological model has been developed that describes the induced anisotropy of the vertical-cavity surface-emitting laser (VCSEL) gain for the single-mode mode in the form of a second-order polynomial with respect to the degrees of density of the injection current, where the decomposition coefficients are implicit functions of temperature. The model is based on the analysis of data from theoretical and experimental studies of the dynamics of thermal processes in VCSEL. From the general view of the dependencies, it follows that in single-mode operation, a VCSEL cannot have more than two polarisation switching points, and of different types. The performance of the model is demonstrated on the basis of a qualitative analysis of previously published series of experimental data on temperature dependencies of the position of polarisation switching points. For short-wave emitters, such dependencies are monotonic and can be easily described by the relative shift of the curves that determine the anisotropy of the gain for orthogonally polarised modes. For long-wavelength VCSELs, the data for which have been published in the literature, the situation turns out to be much more complicated: not only the relative location of the curves changes, but also their «curvature», which is mainly associated with the quadratic term. At the same time, it turned out to be possible to explain the almost constant position of one of the points of polarisation switching.

Author Biographies

Leonid I. Burov, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of general physics, faculty of physics

 

Pavel M. Labatsevich, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

senior lecturer at the department of general physics, faculty of physics

 

References

  1. Burov LI, Gorbatsevich AS, Lobatsevich PM. The induced amplification dichroism in surface-emitting semiconductor lasers. Vestnik BGU. Seriya 1, Fizika. Matematika. Informatika. 2016;3:63–70. Russian.
  2. Burov LI, Gorbatsevich AS, Lobatsevich PM. The effect of the orientational anisotropy of VCSEL parameters on the possibility to implement polarization switching. Journal of the Belarusian State University. Physics. 2018;1:51–57. Russian.
  3. Jadan M, Addasi JS, Burov LI, Gorbatsevich АS, Lobatsevich PM. Polarization switching mechanism in surface-emitting semiconductor lasers. Optik. 2018;158:118–126. DOI: 10.1016/j.ijleo.2017.11.147.
  4. Jadan M, Addasi J, Flaifel MH, Burov LI, Gorbatsevich АS, Lobatsevich PM. The effect of VCSEL intrinsic dynamics on polarization bistability. Results in Physics. 2019;14:102379. DOI: 10.1016/j.rinp.2019.102379.
  5. Jadan M, Burov LI, Gorbatsevich AS, Sokolov ES. Polarization switching in single-mode injection semiconductor laser. Journal of Applied Spectroscopy. 2009;76(5):678–684. DOI: 10.1007/s10812-009-9252-5.
  6. San Miguel M, Feng Q, Moloney JV. Light-polarization dynamics in surface-emitting semiconductor lasers. Physical Review A. 1995;52(2):1728–1739. DOI: 10.1103/PhysRevA.52.1728.
  7. Danckaert J, Nagler B, Albert J, Panajotov K, Veretennicoff I, Erneux T. Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers. Optics Communications. 2002;201(1–3):129–137. DOI: 10.1016/S0030-4018 (01)01668-6.
  8. Wang Q, Guan B, Liu K, Liu X, Jiang X, Ma Y, et al. Temperature dependent polarization switch of 850 nm VCSELs with different apertures. Optics and Laser Technology. 2014;63:19–23. DOI: 10.1016/j.optlastec.2014.03.001.
  9. Quirce A, Valle A, Pesquera L, Thienpont H, Panajotov K. Measurement of temperature-dependent polarization parameters in long wavelength VCSELs. IEEE Journal of Selected Topics in Quantum Electronics. 2015;21(6):1800207. DOI: 10.1109/JSTQE.2015.2410260.
  10. Valle A, Shore KA, Pesquera L. Polarization selection in birefringent vertical-cavity surface emitting lasers. Journal of Lightwave Technology. 1996;14(9):2062–2068. DOI: 10.1109/50.536974.
  11. Yu SF. Analysis and design of vertical­cavity surface­emitting lasers. New Jersey: Wiley; 2003. 464 p.
  12. Michalzik R. VCSEL fundamentals. In: Michalzik R, editor. VCSELs. Fundamentals, technology and applications of verticalcavity surface­emitting lasers. Berlin: Springer; 2013. p. 19–75 (Springer series in optical sciences; volume 166). DOI: 10.1007/978-3-642-24986-0_2.
  13. Travagnin M. Linear anisotropies and polarization properties of vertical-cavity surface-emitting semiconductor lasers. Physical Review A. 1997;56(5):4094–4105. DOI: 10.1103/PhysRevA.56.4094.
  14. van Doom AKJ, van Exter MP, Woerdman JP. Strain-induced birefringence in vertical-cavity semiconductor lasers. IEEE Journal of Quantum Electronics. 1998;34(4):700–706. DOI: 10.1109/3.663454.
  15. van Exter MP, van Doom AKJ, Woerdman JP. Electro-optic effect and birefringent in semiconductor vertical-cavity lasers. Physical Review A. 1997;56(1):845–853. DOI: 10.1103/PhysRevA.56.845.
  16. Hendriks RFM, van Exter MP, Woerdman JP, van Geelen A, Weegels L, Gulden KH, et al. Electro-optic birefringent in semiconductor vertical-cavity lasers. Applied Physics Letters. 1997;71(18):2599–2601. DOI: 10.1063/1.119340.
  17. Ning CZ, Moloney JV. Thermal effects on the threshold of vertical-cavity surface-emitting lasers: first- and second-order phase transitions. Optics Letters. 1995;20(10):1151–1153. DOI: 10.1364/OL.20.001151.
  18. Liu Y, Ng W-C, Choquette KD, Hess K. Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics. 2005;41(1):15–25. DOI: 10.1109/JQE.2004.839239.
  19. Willemsen MB, Khalid MUF, van Exter MP, Woerdman JP. Polarization switching of a vertical-cavity semiconductor laser as a Kramers hopping problem. Physical Review Letters. 1999;82(24):4815. DOI: 10.1103/PhysRevLett.82.4815.
  20. Coldren LA, Corzine SW. Diode lasers and photonic integrated circuits. New York: Wiley; 1995. 624 p.
  21. Yamada M. Theory of semiconductor lasers. Tokyo: Springer; 2014. 241 p. DOI: 10.1007/978-4-431-54889-8.
  22. Burak D, Moloney JV, Binder R. Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers. Physical Review A. 2000;61(5):053809. DOI: 10.1103/PhysRevA.61.053809.
  23. Van der Sande G, Peeters M, Veretennicoff I, Danckaert J, Verschaffelt G, Balle S. Effects of stress, temperature, and spin flips on polarization switching in vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics. 2006;43(9):896–906. DOI: 10.1109/JQE.2006.879816.
  24. Baveja PP, Kögel B, Westbergh P, Gustavsson JS, Haglund A, Maywar DN, et al. Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling. Optics Express. 2011;19(16):15490–15505. DOI: 10.1364/OE.19.015490.
  25. Zhang J-P. The dynamic properties and stability analysis for vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics. 1995;31(12):2127–2132. DOI: 10.1109/3.477737.
  26. Balle S, Tolkachova E, San Miguel M, Tredicce JR, Martin-Regalado J, Gahl A. Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics. Optics Letters. 1999;24(16):1121–1123. DOI: 10.1364/OL.24.001121.
  27. Sondermann M, Weinkath M, Ackemann T, Mulet J, Balle S. Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers. Physical Review A. 2003;68(3):033822. DOI: 10.1103/PhysRevA.68.033822.
  28. Chen C, Leisher PO, Allerman AA, Geib KM, Choquette KD. Temperature analysis of threshold current in infrared vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics. 2006;42(10):1078–1083. DOI: 10.1109/JQE.2006.881828.
  29. Masoller C, Torre MS. Modeling thermal effects and polarization competition in vertical-cavity surface-emitting lasers. Optics Express. 2008;16(26):21282–21296. DOI: 10.1364/OE.16.021282.
  30. Goobar E, Mahon C, Peters FH, Peters MG, Coldren LA. Low-temperature operation of vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters. 1995;7(1):7–9. DOI: 10.1109/68.363393.
  31. Kuo W-C, Wu Y-H, Li Y-C, Yen T-C. Criticalities and phase transition in the polarization switching of vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters. 2012;24(24):2262–2264. DOI: 10.1109/LPT.2012.2226572.
  32. Ryvkin B, Panajotov K, Georgievski A, Danckaert J, Peters M, Verschaffelt G, et al. Effect of photon-energy-dependent loss and gain mechanisms on polarization switching in vertical-cavity surface-emitting lasers. Journal of the Optical Society of America B. 1999;16(11):2106–2113. DOI: 10.1364/JOSAB.16.002106.
  33. Dabbicco M, Spagnolo V, Scamarcio G. 2-D temperature mapping of vertical-cavity surface-emitting lasers determined by microprobe electroluminescence. IEEE Photonics Technology Letters. 2002;14(3):266–268. DOI: 10.1109/68.986781.
  34. Quirce A, Valle A, Pesquera L, Panajotov K, Thienpont H. Effect of temperature on polarization switching in long-wavelength VCSELs. SPIE Conference Proceedings. 2015;9381:93810X. DOI: 10.1117/12.2079742.
  35. Torre MS, Masoller C. Dynamical hysteresis and thermal effects in vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics. 2010;46(12):1788–1794. DOI: 10.1109/JQE.2010.2046139.
  36. Burov LI, Gorbatsevich AS, Sokolov ES. Spectral-polarization radiation composition of surface-emitting semiconductor lasers in polarization instability region. In: Poluprovodnikovye lazery i sistemy na ikh osnove. 10­i Belorussko­rossiiskii seminar; 26–29 maya 2015 g.; Minsk, Belarus’ [Semiconductor lasers and systems. 10th Belarusian-Russian workshop; 2015 May 26–29; Minsk, Belarus]. Minsk: Kovcheg; 2015. p. 173–175. Russian.
  37. Bittner S, Sciamanna M. Complex nonlinear dynamics of polarization and transverse modes in a broad-area VCSEL. APL Photonics. 2022;7:126108. DOI: 10.1063/5.0104852.
  38. Apanasevich AV, Petrenko AA, Bougrov VE. Polarization instabilities in vertical-cavity surface-emitting lasers. Reviews on Advanced Materials and Technologies. 2022;4(1):9–13. DOI: 10.17586/2687-0568-2022-4-1-9-13.
Published
2024-06-04
Keywords: polarisation switching, VCSEL, anisotropy, temperature dependence of polarisation switching points
How to Cite
Burov, L. I., & Labatsevich, P. M. (2024). Modelling thermal effects on polarisation switching in surface-emitting semiconductor lasers. Journal of the Belarusian State University. Physics, 2, 20-29. Retrieved from https://journals.bsu.by/index.php/physics/article/view/6261