Self-oscillation mode of laser radiation with resonant phase nonlinearity

  • Elena V. Timoshchenko Mogilev State A. Kuleshov University, 1 Kasmanawtaw Street, Magiliow 212022, Belarus
  • Vladimir A. Yurevich Belarusian State University of Food and Chemical Technologies, 3 Shmidta Аvenue, Magiliow 212027, Belarus

Abstract

The paper presents a resonance model of generation of a semiconductor laser emitting at wavelengths in the IR-range, which takes into account the nonlinear phase transformation of the resonant material response of the medium and the field of stimulated emission. The scheme for modelling the generation is based on a modification of the Maxwell – Bloch equations for materials with quantum-size effects. Under the condition of a relatively high concentration of quantum dots represented by dipole particles, a combination of nonlinear effects causing the dynamics of the phase relationship of the field and resonant polarisation is typical for these media. These include the mutual influence of near fields of dipole particles, resonant nonlinear refraction, and the optical Stark effect. The results of numerical calculation and qualitative analysis of the model showed that a special instability of the radiation is caused by the optical Stark effect, which maintains an effective level of amplitude-phase coupling in the laser scheme. It is shown that it is the factor of the nonlinear Stark shift of the resonant gain line that is capable of destabilising stable states of the laser system. In conjunction with other mechanisms of phase nonlinearity, the Stark effect generates self-modulation dynamics in forced emission, stimula­ ting, among other things, a regime of self-sustaining intensity pulsations that is interesting from a practical point of view.

Author Biographies

Elena V. Timoshchenko, Mogilev State A. Kuleshov University, 1 Kasmanawtaw Street, Magiliow 212022, Belarus

PhD (physics and mathematics), docent; head of the department of physics and computer technology, faculty of mathematics and natural sciences

Vladimir A. Yurevich, Belarusian State University of Food and Chemical Technologies, 3 Shmidta Аvenue, Magiliow 212027, Belarus

doctor of science (physics and mathema­ tics), full professor; professor at the department of technosphere safety and general physics, mechanical faculty

References

  1. Baimuratov AS, Rukhlenko ID, Turkov VK, Baranov AV, Fedorov AV. Quantum-dot supercrystals for future nanophotonics. Scientific Reports. 2013;3:1727. DOI:10.1038/srep01727.
  2. Salii RA, Mintairov SA, Nadtochiy AM, Nevedomskii VN, Shvarts MZ, Kalyuzhnyy NA. Comparative analysis of the optical and physical properties of InAs and In0.8Ga0.2As quantum dots and solar cells based on them. Semiconductors. 2020;54(10):1267–1275. DOI: 10.1134/S1063782620100255.
  3. Zainabidinov SZ, Saidov AS, Boboev AY, Usmonov JN. Features of the properties of the surface of (GaAs)1 – x – y(Ge2)x(ZnSe)y semiconductor solid solution with ZnSe quantum dots. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15(1):94–99. DOI: 10.1134/S102745102101016X.
  4. Borri P, Langbein W, Schneider S, Woggon U, Sellin RL, Ouyang D, et al. Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots. Physical Review B. 2002;66(8):081306. DOI:10.1103/PhysRevB.66.081306.
  5. Htoon H, Takagahara T, Kulik D, Baklenov O, Holmes AL Jr, Shih CK. Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. Physical Review Letters. 2002;88(8):087401. DOI:10.1103/PhysRevLett.88.087401.
  6. Vasil’ev PP. Strong coupling regime and Rabi oscillations in GaAs/AlGaAs heterostructures as a consequence of electron-hole pair condensation at room temperature. Pis’ma v ZhETF. 2022;115(7–8):424–430. Russian. EDN: FKVUXH.
  7. Sanchez F, Brunel M, Martel G, Aїt Ameur K. Local field correction to the second laser threshold. Physical Review A. 2000; 61(3):033817. DOI: 10.1103/PhysRevA.61.033817.
  8. Garmire E. Resonant optical nonlinearities in semiconductors. IEEE Journal of Selected Topics and Quantum Electronics. 2000; 6(6):1094–1110. DOI: 10.1109/2944.902158.
  9. Unold T, Mueller K, Lienau C, Elsaesser T, Wieck AD. Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations. Physical Review Letters. 2004;92(15):157401. DOI:10.1103/PhysRevLett.92.157401.
  10. Slobodeniuk AO, Koutenský P, Bartoš M, Trojánek F, Malý P, Novotný T, et al. Semiconductor Bloch equation analysis of optical Stark and Bloch – Siegert shifts in monolayer WSe2 and MoS2. Physical Review B. 2022;106(23):235304. DOI: 10.1103/PhysRevB.106.235304.
  11. Ханин ЯИ. Лекции по квантовой радиофизике. Hижний Новгород: ИПФ РАН; 2005. 224 с.
  12. Oraevskii AN. Dynamics of lasers with a saturable absorber. Kvantovaya elektronika. 2003;33(10):849–855. Russian.
  13. Апанасевич ПА. Основы теории взаимодействия света с веществом. Степанов БИ, редактор. Минск: Наука и техника; 1977. 496 с.
  14. Timoshchenko EV. Dynamical mode of laser radiation in quantum dots structures with the optical stark effect. Nonlinear Phenomena in Complex Systems. 2024;27(2):185–193. DOI: 10.5281/zenodo.12621694.
  15. Andryushkin VV, Novikov II, Gladyshev AG, Babichev AV, Karachinsky LYa, Dudelev VV, et al. Features of epitaxial growth by MBE of thin highly strained InGaAs/InAlAs layers on InP substrates. Zhurnal tekhnicheskoi fiziki. 2023;93(8):1166–1172. Russian. DOI: 10.21883/JTF.2023.08.55979.41-23.
Published
2024-10-04
Keywords: laser radiation, semiconductor quantum-dimensional structures, intensity self-pulsations, optical Stark effect
How to Cite
Timoshchenko, E. V., & Yurevich, V. A. (2024). Self-oscillation mode of laser radiation with resonant phase nonlinearity. Journal of the Belarusian State University. Physics, 3, 41-49. Retrieved from https://journals.bsu.by/index.php/physics/article/view/6507