Anticorrosion compositions based on polyurethane with fillers from carbon nanotubes, iron and aluminium oxides for protection of metal surfaces

  • Vladimir I. Suslyaev Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
  • Vladislav A. Debelov Tomsk State University of Architecture and Building, 2 Soljanaja Square, Tomsk 634003, Russia
  • Yury A. Vlasov Tomsk State University of Architecture and Building, 2 Soljanaja Square, Tomsk 634003, Russia
  • Natalia N. Debelova Tomsk State University of Architecture and Building, 2 Soljanaja Square, Tomsk 634003, Russia
  • Kiril V. Dorozhkin Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
  • Alexander V. Badiin Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia

Abstract

Hydrophobic properties of composite materials based on polyurethane with fillers of carbon nanotubes, iron and aluminium oxides are considered. The data on the corrosion rate of St09G2S steel coated with a 0.5 mm thick layer of composites in aqueous solutions of sodium chloride, sulfate and carbonate salts are presented. It is shown that the most effective is the composition including a polymer with a filler from finely dispersed iron(III) oxide. The results of experimental studies of the dependence of electromagnetic response spectra, namely reflection, transmission and absorption coefficients of flat material samples are presented. The anticorrosion properties of the proposed composites were tested by comparing the electromagnetic response from dry and immersed in water samples using terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.1–1.6 THz on a real-time spectrometer T-SPEC-1000 (Teravil, Lithuania). It was found that the values of dielectric permittivity and dissipation factor allow to determine the boundary conditions, in which polymer composites can be effectively used as anticorrosion coatings on metal surfaces.

Author Biographies

Vladimir I. Suslyaev, Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia

PhD (physics and mathematics), docent; associate professor at the department of radioelectronics, faculty of radiophysics

Vladislav A. Debelov, Tomsk State University of Architecture and Building, 2 Soljanaja Square, Tomsk 634003, Russia

assistant at the department of automobile transport and electrical engineering, faculty of mechanics and technology

Yury A. Vlasov, Tomsk State University of Architecture and Building, 2 Soljanaja Square, Tomsk 634003, Russia

doctor of science (engineering), full professor; dean of the faculty of mechanics and technology

Natalia N. Debelova, Tomsk State University of Architecture and Building, 2 Soljanaja Square, Tomsk 634003, Russia

PhD (engineering); associate professor at the department of economics, organisation, management of civil engineering and housing and communal complex, Institute of cadastre, economy and engineering systems in building

Kiril V. Dorozhkin, Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia

junior researcher at the laboratory of terahertz research

Alexander V. Badiin, Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia

PhD (physics and mathematics), docent; associate professor at the department of radioelectronics, faculty of radiophysics

References

  1. Negmatov S, Kuchkorov U, Abed N, Negmatova K, Sultanov S, Bozorboev S, et al. Research and development of effective compositions of anti-corrosion composite polymer materials and coatings. Universum: tekhnicheskie nauki [Internet]. 2023 [cited 2024 July 17];3(5):52–58. Available from: https://7universum.com/ru/tech/archive/item/15158. EDN: ICKUDR.
  2. Babakhanova MG, Negmatova KS, Sultonov SU, Babakhanovа MA, Ahmedova DU. Investigation of the influence of fillers on the adhesive properties of composite polymer coatings. Thematics Journal of Chemistry. 2022;6(1):12–16.
  3. Хакимов Р, Ибрагимов Б, Айрапетов Д. Возможность снижения шума и вибрации транспортно-технологических машин путем нанесения многофункционального антикоррозионного покрытия. Общество и инновации. 2022;3(6/S):188–194. DOI: 10.47689/2181-1415-vol3-iss6/S-pp188-194.
  4. Ramesh M, Rajeshkumar LN, Srinivasan N, Kumar DV, Balaji D. Influence of filler material on properties of fiber-reinforced polymer composites: a review. e-Polymers. 2022;22:898–916. DOI: 10.1515/epoly-2022-0080.
  5. Wang Y, Xu G, Yu H, Hu C, Yan X, Guo T, et al. Comparison of anti-corrosion properties of polyurethane based composite coatings with low infrared emissivity. Applied Surface Science. 2011;257(10):4743–4748. DOI: 10.1016/j.apsusc.2010.12.152.
  6. Зиновьев ВМ, Зрайченко ЛИ, Горшкова ЛМ. Полиуретановые и эпоксиуретановые покрытия для антикоррозионной защиты металлических конструкций. Инновации. 2014;6:118–120. EDN: TLODAR.
  7. Ирле К, Райер Р, Рошу Р, Штингль Т, Буланов МН. Высокоэффективные водно-дисперсионные полиуретановые ЛКМ для защиты стальных поверхностей. Лакокрасочные материалы и их применение. 2011;10:43–45. EDN: RBPGUZ.
  8. Adamu AA, Muhamad Sarih N, Gan SN. Thermal and anticorrosion properties of polyurethane coatings derived from recycled polyethylene terephthalate and palm olein-based polyols. Royal Society Open Science. 2021;8(4):201087. DOI: 10.1098/rsos.201087.
  9. Дебелова НН, Власов ЮА, Фукс ВР, Крючков ЕН, Исаенко ПВ, Дебелов ВА. Коррозионная защита кузова автомобиля. Флагман науки. 2023;8:240–248. EDN: SMPXYF.
  10. Гусева ЕН. Полиуретановые покрытия на основе нанокомпозитов с аллотропными модификациями углерода [диссертация]. Санкт-Петербург: [б. и.]; 2020. 219 с.
  11. Розенфельд ИЛ, Рубинштейн ФИ. Антикоррозионные грунтовки и ингибированные лакокрасочные покрытия. Москва: Химия; 1980. 200 с. (Надежность и качество).
  12. Чухланов ВЮ, Селиванов ОГ. Диэлектрические свойства герметизирующей композиции на основе эпоксидиановой смолы, модифицированной полиметилфенилсилоксаном, в сантиметровом СВЧ-радиодиапазоне. Клеи. Герметики. Технологии. 2015;3:6–10. EDN: TKUAOL.
  13. Пичугин АП, редактор. Эффективные методологии и технологии управления качеством строительных материалов. Сборник научных трудов по материалам Национальной научно-технической конференции с международным участием; 16–19 февраля 2021 г.; Новосибирск, Россия. Новосибирск: [б. и.]; 2021. 237 с.
  14. Малиновская ТД, Сусляев ВИ, Журавлев ВА, Мелентьев СВ, Коровин ЕЮ, Дорожкин КВ и др. Электромагнитные характеристики композиционных покрытий с ITO-наполнителем. Известия высших учебных заведений. Физика. 2016;59(9):168–169. EDN: WMCELD.
  15. Yahyapour M, Jahn A, Dutzi K, Puppe T, Leisching P, Schmauss B, et al. Fastest thickness measurements with a terahertz time-domain system based on electronically controlled optical sampling. Applied Sciences. 2019;9(7):1283. DOI: 10.3390/app9071283.
  16. Jahed NMS, Saeedkia D. Terahertz-thickness measurement applies itself to paint and coatings. Photonics Spectra [Internet]. 2020 [cited 2024 July 17];54(11):50–52. Available from: https://www.photonics.com/articles/terahertz-thickness_measurement_applies_ itself_to/a66316/.
  17. Dorozhkin KV, Dunaevsky GE, Sarkisov SYu, Suslyaev VI, Tolbanov OP, Zhuravlev VA, et al. Terahertz dielectric properties of multiwalled carbon nanotube/polyethylene composites. Materials Research Express. 2017;4(10):106201. DOI: 10.1088/2053-1591/ aa8f06.
Published
2025-01-27
Keywords: corrosion protection, composites, polyurethane, iron oxide, aluminium oxide, carbon nanotubes
How to Cite
Suslyaev, V. I., Debelov, V. A., Vlasov, Y. A., Debelova, N. N., Dorozhkin, K. V., & Badiin, A. V. (2025). Anticorrosion compositions based on polyurethane with fillers from carbon nanotubes, iron and aluminium oxides for protection of metal surfaces. Journal of the Belarusian State University. Physics, 1, 57-65. Retrieved from https://journals.bsu.by/index.php/physics/article/view/6796