Effect of thermal cycles on optical properties of epoxy resin reinforced with graphene and carbon nanotubes

  • Irina N. Parkhomenko Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Liudmila  A. Vlasukova Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Ivan D. Parfimovich A. N. Sevchenko Institute of Applied Physics Problems, Belarusian State University, 7 Kurchatava Street, Minsk 220045, Belarus
  • Alexander S. Kamyshan A. N. Sevchenko Institute of Applied Physics Problems, Belarusian State University, 7 Kurchatava Street, Minsk 220045, Belarus
  • Maria N. Zhukova A. N. Sevchenko Institute of Applied Physics Problems, Belarusian State University, 7 Kurchatava Street, Minsk 220045, Belarus

Abstract

The effect of thermal cycling under conditions equivalent to 16 h in near-earth orbit on the optical absorption of pristine epoxy resin and epoxy-based polymers with the addition of graphene nanoplatelets and multi-walled carbon nanotubes has been studied. The coefficient of absorption of solar radiation (αs) and the emissivity (ε) in the thermal IR range of the synthesised polymers were determined. It was shown that the addition of 1 wt. % of carbon filler leads to an increase in αs from 0.88 to 0.94–0.95 and ε from 0.93 to 0.95–0.96. It was found that thermal cycling results in an increase in αs of the sample with graphene nanoplatelets by 0.5 %. In the case of the sample with carbon nanotubes αs decreased by 0.4 %. The coefficient of absorption of solar radiation of the unmodified epoxy resin decreased by about 2 % after thermal cycling. The emissivity increased by ∆ε = 0.006 (0.6 %) for unmodified epoxy resin and by ∆ε = 0.002 (0.2 %) for the samples with carbon fillers after thermal cycling. Based on the optical and Fourier transform IR spectroscopy data, the physical processes occurring in composites during thermal cycling combined with UV radiation are discussed.

Author Biographies

Irina N. Parkhomenko, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); leading researcher at the laboratory of materials and device structures for micro- and nanoelectronics, department of physical electronics and nanotechnologies, faculty of radiophysics and computer technologies

Liudmila  A. Vlasukova, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); head of the laboratory of materials and device structures for micro- and nanoelectronics, department of physical electronics and nanotechnologies, faculty of radiophysics and computer technologies

Ivan D. Parfimovich, A. N. Sevchenko Institute of Applied Physics Problems, Belarusian State University, 7 Kurchatava Street, Minsk 220045, Belarus

PhD (physics and mathematics); leading researcher at the laboratory of elionics

Alexander S. Kamyshan, A. N. Sevchenko Institute of Applied Physics Problems, Belarusian State University, 7 Kurchatava Street, Minsk 220045, Belarus

PhD (physics and mathematics); leading researcher at the laboratory of elionics

Maria N. Zhukova, A. N. Sevchenko Institute of Applied Physics Problems, Belarusian State University, 7 Kurchatava Street, Minsk 220045, Belarus

junior researcher at the laboratory of elionics

References

  1. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon. 2011;49(3):793–803. DOI: 10.1016/j.carbon.2010.10.014.
  2. Jin SB, Son GS, Kim YH, Kim CG. Enhanced durability of silanized multi-walled carbon nanotube / epoxy nanocomposites under simulated low earth orbit space environment. Composites Science and Technology. 2013;87:224–231. DOI: 10.1016/j.compscitech.2013.08.017.
  3. Earp B, Hubbard J, Tracy A, Sakoda D, Luhrs C. Electrical behavior of CNT epoxy composites under in situ simulated space environments. Composites. Part B, Engineering. 2021;219:108874. DOI: 10.1016/j.compositesb.2021.108874.
  4. Wazalwar R, Sahu M, Raichur AM. Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: current status and road to industrialization. Nanoscale Advances. 2021;3(10):2741–2776. DOI: 10.1039/D1NA00050K.
  5. Zhang W, Yi M, Shen Z, Zhao X, Zhang X, Ma S. Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance. Journal of Materials Science. 2013;48(6):2416–2423. DOI: 10.1007/s10853-012-7028-4.
  6. Park SY, Choi HS, Choi WJ, Kwon H. Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber / epoxy composites for low earth orbit space applications. Composites. Part B, Engineering. 2012;43(2):726–738. DOI: 10.1016/j.compositesb.2011.03.007.
  7. Shin K-B, Kim C-G, Hong C-S, Lee H-H. Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments. Composites. Part B, Engineering. 2000;31(3):223–235. DOI: 10.1016/S1359-8368(99)00073-6.
  8. Ghasemi-Kahrizsangi A, Shariatpanahi H, Neshati J, Akbarinezhad E. Degradation of modified carbon black / epoxy nanocomposite coatings under ultraviolet exposure. Applied Surface Science. 2015;353:530–539. DOI: 10.1016/j.apsusc.2015.06.029.
  9. Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I. Epoxy composites with carbon nanotubes and graphene nanoplatelets – dispersion and synergy effects. Carbon. 2014;78:268–278. DOI: 10.1016/j.carbon.2014.07.003.
  10. Zhang B, Chen Y, Wang J, Blau WJ, Zhuang X, He N. Multi-walled carbon nanotubes covalently functionalized with polyhedral oligomeric silsesquioxanes for optical limiting. Carbon. 2010;48(6):1738–1742. DOI: 10.1016/j.carbon.2010.01.015.
  11. Martin CA, Sandler JKW, Shaffer MSP, Schwarz M-K, Bauhofer W, Schulte K, et al. Formation of percolating networks in multi-wall carbon-nanotube – epoxy composites. Composites Science and Technology. 2004;64(15):2309–2316. DOI: 10.1016/j.compscitech.2004.01.025.
  12. Durmus H, Safak H, Akbas HZ, Ahmetli G. Optical properties of modified epoxy resin with various oxime derivatives in the UV‐VIS spectral region. Journal of Applied Polymer Science. 2011;120(3):1490–1495. DOI: 10.1002/app.33287.
  13. Jilani W, Fourati N, Zerrouki C, Faugeras P-A, Guinault A, Zerrouki R, et al. Exploring the structural properties and enhancement of opto-electrical investigations for the synthesized epoxy based polymers with local nanoscale structures. Materials Research Express. 2020;7:035305. DOI: 10.1088/2053-1591/ab7b2a.
  14. Bouzidi A, Omri K, El Mir L, Guermazi H. Preparation, structural and optical investigations of ITO nanopowder and ITO/epoxy nanocomposites. Materials Science in Semiconductor Processing. 2015;39:536–543. DOI: 10.1016/j.mssp.2015.04.051.
  15. Kaya İ, Gül M, Şenol D. Synthesis and characterization of epoxy resins containing imine group and their curing processes with aromatic diamine. Journal of Macromolecular Science. Part A, Pure and Applied Chemistry. 2019;56(6):618–627. DOI: 10.1080/10601325.2019.1596747.
  16. Noreen F, Bibi A, Khalid N, Khan IU. Azomethine ether-based potential curing agent for epoxy resin (diglycidyl ether of bisphenol A): synthesis and characterization. Journal of Elastomers & Plastics. 2021;53(4):283–295. DOI: 10.1177/0095244320928570.
  17. Saravanan K, Sathiyanarayanan S, Muralidharan S, Azim SS, Venkatachari G. Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment. Progress in Organic Coatings. 2007;59(2):160–167. DOI: 10.1016/j.porgcoat.2007.03.002.
  18. Xie R, Darvishzadeh R, Skidmore A, van der Meer F. Characterizing foliar phenolic compounds and their absorption features in temperate forests using leaf spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing. 2024;212:338–356. DOI: 10.1016/j.isprsjprs.2024.05.014.
  19. Ben-Dor E, Inbar Y, Chen Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment. 1997;61(1):1–15. DOI: 10.1016/S0034-4257(96)00120-4.
  20. Watanabe A, Furukawa H, Miyamoto S, Minagawa H. Non-destructive chemical analysis of water and chlorine content in cement paste using near-infrared spectroscopy. Construction and Building Materials. 2019;196:95–104. DOI: 10.1016/j.conbuildmat.2018.11.114.
  21. Chabert B, Lachenal G, Vinh Tung C. Epoxy resins and epoxy blends studied by near infrared spectroscopy. Macromolecular Symposia. 1995;94(1):145–158. DOI: 10.1002/masy.19950940113.
  22. Doblies A, Boll B, Fiedler B. Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and Fourier transform infrared spectroscopy. Polymers. 2019;11(2):363. DOI: 10.3390/polym11020363.
  23. Cole KC, Noel D, Hechler JJ. Characterization of epoxy – graphite composites by diffuse reflectance FTIR. In: Cameron DG, Grasselli JG, editors. 1985 International conference on Fourier and computerized infrared spectroscopy; 1985 January 1–2; Ottawa, Canada. Bellingham: SPIE; 1985. p. 114 (Proceedings of SPIE; volume 0553). DOI: 10.1117/12.970727.
  24. Lin SC, Bulkin BJ, Pearce EM. Epoxy resins. III. Application of Fourier transform IR to degradation studies of epoxy systems. Journal of Polymer Science: Polymer Chemistry Edition. 1979;17(10):3121–3148. DOI: 10.1002/pol.1979.170171006.
  25. Jana S, Zhong W-H. FTIR study of ageing epoxy resin reinforced by reactive graphitic nanofibers. Journal of Applied Polymer Science. 2007;106(5):3555–3563. DOI: 10.1002/app.26925.
  26. Allen RO, Sanderson P. Characterization of epoxy glues with FTIR. Applied Spectroscopy Reviews. 1988;24(3–4):175–187. DOI: 10.1080/05704928808060457.
  27. Zhang Z, Wang C, Huang G, Liu H, Yang S, Zhang A. Thermal degradation behaviors and reaction mechanism of carbon fibre – epoxy composite from hydrogen tank by TG-FTIR. Journal of Hazardous Materials. 2018;357:73–80. DOI: 10.1016/j.jhazmat.2018.05.057.
  28. Баженов ЮМ, Король ЕА, Ерофеев ВТ, Митина ЕА. Ограждающие конструкции с использованием бетонов низкой теплопроводности: основы теории, методы расчета и технологическое проектирование. Москва: Издательство Ассоциации строительных вузов; 2008. 320 с.
  29. Чашкин МА, Тринеева ВВ, Вахрушина МА, Захаров АИ, Кодолов ВИ. ИК-спектроскопическое исследование структуры эпоксидной композиции, модифицированной медь-углеродным нанокомпозитом, и процессов, связанных с ее модификацией. Химическая физика и мезоскопия. 2012;14(2):223–230. EDN: PJLWLL.
Published
2025-01-20
Keywords: thermal cycles, epoxy resin, graphene, carbon nanotubes, absorption of solar radiation
Supporting Agencies This work was carried out within the framework of the state programme of scientific research «Convergence-2025» (assignment 3.07.1.2, state registration No. 20211910, and assignment 3.07.1, state registration No. 20211235).
How to Cite
Parkhomenko, I. N., Vlasukova, L.  A., Parfimovich, I. D., Kamyshan, A. S., & Zhukova, M. N. (2025). Effect of thermal cycles on optical properties of epoxy resin reinforced with graphene and carbon nanotubes. Journal of the Belarusian State University. Physics, 1, 29-37. Retrieved from https://journals.bsu.by/index.php/physics/article/view/6800
Section
Nanomaterials and Nanotechnologies