Effect of thermal cycles on optical properties of epoxy resin reinforced with graphene and carbon nanotubes
Abstract
The effect of thermal cycling under conditions equivalent to 16 h in near-earth orbit on the optical absorption of pristine epoxy resin and epoxy-based polymers with the addition of graphene nanoplatelets and multi-walled carbon nanotubes has been studied. The coefficient of absorption of solar radiation (αs) and the emissivity (ε) in the thermal IR range of the synthesised polymers were determined. It was shown that the addition of 1 wt. % of carbon filler leads to an increase in αs from 0.88 to 0.94–0.95 and ε from 0.93 to 0.95–0.96. It was found that thermal cycling results in an increase in αs of the sample with graphene nanoplatelets by 0.5 %. In the case of the sample with carbon nanotubes αs decreased by 0.4 %. The coefficient of absorption of solar radiation of the unmodified epoxy resin decreased by about 2 % after thermal cycling. The emissivity increased by ∆ε = 0.006 (0.6 %) for unmodified epoxy resin and by ∆ε = 0.002 (0.2 %) for the samples with carbon fillers after thermal cycling. Based on the optical and Fourier transform IR spectroscopy data, the physical processes occurring in composites during thermal cycling combined with UV radiation are discussed.
References
- Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon. 2011;49(3):793–803. DOI: 10.1016/j.carbon.2010.10.014.
- Jin SB, Son GS, Kim YH, Kim CG. Enhanced durability of silanized multi-walled carbon nanotube / epoxy nanocomposites under simulated low earth orbit space environment. Composites Science and Technology. 2013;87:224–231. DOI: 10.1016/j.compscitech.2013.08.017.
- Earp B, Hubbard J, Tracy A, Sakoda D, Luhrs C. Electrical behavior of CNT epoxy composites under in situ simulated space environments. Composites. Part B, Engineering. 2021;219:108874. DOI: 10.1016/j.compositesb.2021.108874.
- Wazalwar R, Sahu M, Raichur AM. Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: current status and road to industrialization. Nanoscale Advances. 2021;3(10):2741–2776. DOI: 10.1039/D1NA00050K.
- Zhang W, Yi M, Shen Z, Zhao X, Zhang X, Ma S. Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance. Journal of Materials Science. 2013;48(6):2416–2423. DOI: 10.1007/s10853-012-7028-4.
- Park SY, Choi HS, Choi WJ, Kwon H. Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber / epoxy composites for low earth orbit space applications. Composites. Part B, Engineering. 2012;43(2):726–738. DOI: 10.1016/j.compositesb.2011.03.007.
- Shin K-B, Kim C-G, Hong C-S, Lee H-H. Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments. Composites. Part B, Engineering. 2000;31(3):223–235. DOI: 10.1016/S1359-8368(99)00073-6.
- Ghasemi-Kahrizsangi A, Shariatpanahi H, Neshati J, Akbarinezhad E. Degradation of modified carbon black / epoxy nanocomposite coatings under ultraviolet exposure. Applied Surface Science. 2015;353:530–539. DOI: 10.1016/j.apsusc.2015.06.029.
- Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I. Epoxy composites with carbon nanotubes and graphene nanoplatelets – dispersion and synergy effects. Carbon. 2014;78:268–278. DOI: 10.1016/j.carbon.2014.07.003.
- Zhang B, Chen Y, Wang J, Blau WJ, Zhuang X, He N. Multi-walled carbon nanotubes covalently functionalized with polyhedral oligomeric silsesquioxanes for optical limiting. Carbon. 2010;48(6):1738–1742. DOI: 10.1016/j.carbon.2010.01.015.
- Martin CA, Sandler JKW, Shaffer MSP, Schwarz M-K, Bauhofer W, Schulte K, et al. Formation of percolating networks in multi-wall carbon-nanotube – epoxy composites. Composites Science and Technology. 2004;64(15):2309–2316. DOI: 10.1016/j.compscitech.2004.01.025.
- Durmus H, Safak H, Akbas HZ, Ahmetli G. Optical properties of modified epoxy resin with various oxime derivatives in the UV‐VIS spectral region. Journal of Applied Polymer Science. 2011;120(3):1490–1495. DOI: 10.1002/app.33287.
- Jilani W, Fourati N, Zerrouki C, Faugeras P-A, Guinault A, Zerrouki R, et al. Exploring the structural properties and enhancement of opto-electrical investigations for the synthesized epoxy based polymers with local nanoscale structures. Materials Research Express. 2020;7:035305. DOI: 10.1088/2053-1591/ab7b2a.
- Bouzidi A, Omri K, El Mir L, Guermazi H. Preparation, structural and optical investigations of ITO nanopowder and ITO/epoxy nanocomposites. Materials Science in Semiconductor Processing. 2015;39:536–543. DOI: 10.1016/j.mssp.2015.04.051.
- Kaya İ, Gül M, Şenol D. Synthesis and characterization of epoxy resins containing imine group and their curing processes with aromatic diamine. Journal of Macromolecular Science. Part A, Pure and Applied Chemistry. 2019;56(6):618–627. DOI: 10.1080/10601325.2019.1596747.
- Noreen F, Bibi A, Khalid N, Khan IU. Azomethine ether-based potential curing agent for epoxy resin (diglycidyl ether of bisphenol A): synthesis and characterization. Journal of Elastomers & Plastics. 2021;53(4):283–295. DOI: 10.1177/0095244320928570.
- Saravanan K, Sathiyanarayanan S, Muralidharan S, Azim SS, Venkatachari G. Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment. Progress in Organic Coatings. 2007;59(2):160–167. DOI: 10.1016/j.porgcoat.2007.03.002.
- Xie R, Darvishzadeh R, Skidmore A, van der Meer F. Characterizing foliar phenolic compounds and their absorption features in temperate forests using leaf spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing. 2024;212:338–356. DOI: 10.1016/j.isprsjprs.2024.05.014.
- Ben-Dor E, Inbar Y, Chen Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment. 1997;61(1):1–15. DOI: 10.1016/S0034-4257(96)00120-4.
- Watanabe A, Furukawa H, Miyamoto S, Minagawa H. Non-destructive chemical analysis of water and chlorine content in cement paste using near-infrared spectroscopy. Construction and Building Materials. 2019;196:95–104. DOI: 10.1016/j.conbuildmat.2018.11.114.
- Chabert B, Lachenal G, Vinh Tung C. Epoxy resins and epoxy blends studied by near infrared spectroscopy. Macromolecular Symposia. 1995;94(1):145–158. DOI: 10.1002/masy.19950940113.
- Doblies A, Boll B, Fiedler B. Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and Fourier transform infrared spectroscopy. Polymers. 2019;11(2):363. DOI: 10.3390/polym11020363.
- Cole KC, Noel D, Hechler JJ. Characterization of epoxy – graphite composites by diffuse reflectance FTIR. In: Cameron DG, Grasselli JG, editors. 1985 International conference on Fourier and computerized infrared spectroscopy; 1985 January 1–2; Ottawa, Canada. Bellingham: SPIE; 1985. p. 114 (Proceedings of SPIE; volume 0553). DOI: 10.1117/12.970727.
- Lin SC, Bulkin BJ, Pearce EM. Epoxy resins. III. Application of Fourier transform IR to degradation studies of epoxy systems. Journal of Polymer Science: Polymer Chemistry Edition. 1979;17(10):3121–3148. DOI: 10.1002/pol.1979.170171006.
- Jana S, Zhong W-H. FTIR study of ageing epoxy resin reinforced by reactive graphitic nanofibers. Journal of Applied Polymer Science. 2007;106(5):3555–3563. DOI: 10.1002/app.26925.
- Allen RO, Sanderson P. Characterization of epoxy glues with FTIR. Applied Spectroscopy Reviews. 1988;24(3–4):175–187. DOI: 10.1080/05704928808060457.
- Zhang Z, Wang C, Huang G, Liu H, Yang S, Zhang A. Thermal degradation behaviors and reaction mechanism of carbon fibre – epoxy composite from hydrogen tank by TG-FTIR. Journal of Hazardous Materials. 2018;357:73–80. DOI: 10.1016/j.jhazmat.2018.05.057.
- Баженов ЮМ, Король ЕА, Ерофеев ВТ, Митина ЕА. Ограждающие конструкции с использованием бетонов низкой теплопроводности: основы теории, методы расчета и технологическое проектирование. Москва: Издательство Ассоциации строительных вузов; 2008. 320 с.
- Чашкин МА, Тринеева ВВ, Вахрушина МА, Захаров АИ, Кодолов ВИ. ИК-спектроскопическое исследование структуры эпоксидной композиции, модифицированной медь-углеродным нанокомпозитом, и процессов, связанных с ее модификацией. Химическая физика и мезоскопия. 2012;14(2):223–230. EDN: PJLWLL.
Copyright (c) 2025 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)