Influence of pyridine treatment on the optical properties of organic-inorganic perovskite films
Abstract
The pyridine treated films of organic-inorganic perovskites with CH3NH3PbI3 and CH3NH3Pb(I0,57Cl0,43)3 composition were studied. An analysis of the transmission and photoluminescence spectra, as well as kinetics of photoluminescence band intensity and mass center under continuous illumination showed that the effect of pyridine on organic-inorganic perovskites is ambiguous, because along with photostabilization (decrease in the rate of change of photoluminescence band parameters under illumination), the substantial decrease of dark stability takes place, which manifests itself in the change of phase composition during storage.
References
- Park N-G, Grätzel M, Miyasaka T, editors. Organic-Inorganic Halide Perovskite Photovoltaics. From Fundamentals to Device Architectures. Cham: Springer; 2016. DOI: 10.1007/978-3-319-35114-8.
- Song Zh, McElvany Ch, Phillips A, Celik I, Krantz PW, Watthage SC, et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy and Environmental Science. 2017;10(6):1297–1305. DOI: 10.1039/C7EE00757D.
- Chen Q, De Marco N, Yang Y, Song T-B, Chen C-C, Zhao H, et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today. 2015;10(3):355–396. DOI: 10.1016/J.NANTOD.2015.04.009.
- Zhou D, Zhou T, Tian Yu, Zhu X, Yafang Tu. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials. 2018;2018:15. DOI: 10.1155/2018/8148072.
- National Renewable Energy Laboratory (NREL) [Internet]. 2018 [cited 2018 December]. Available from: https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg.
- Berhe TA, Su W-N, Chen Ch-Hs, Pan C-J, Cheng J-H, Chen H-M, et al. Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science. 2016;9:323–356. DOI: 10.1039/C5EE02733K.
- Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy and Environmental Science. 2016;9(6):1989–1997. DOI: 10.1039/C5EE03874J.
- Gottesman R, Zaban A. Perovskites for photovoltaics in the spotlight: photoinduced physical changes and their implications. Accounts of Chemical Research. 2016;49(2):320 –329. DOI: 10.1021/acs.accounts.5b00446.
- Yao Y, Wang G, Wu F, Liu D, Lin C, Rao X, et al. The interface degradation of planar organic-inorganic perovskite solar cell traced by light beam induced current (LBIC). RSC Advances. 2017;7(68):42973– 42978. DOI: 10.1039/C7RA06423C.
- Zhao Y, Zhou W, Tan H, Fu R, Li Q, Lin F, et al. Mobile-ion-induced degradation of organic hole-selective layers in perovskite solar cells. Journal of Physical Chemistry C. 2017;121(27):14517–14523. DOI: 10.1021/acs.jpcc.7b04684.
- DeQuilettes DW, Zhang W, Burlakov VM, Graham DJ, Leijtens T, Osherov A, et al. Photo-induced halide redistribution in organic-inorganic perovskite films. Nature Communications. 2016;7:9. DOI: 10.1038/ncomms11683.
- Li Zh, Xiao Ch, Yang Ye, Harvey SP, Kim DH, Christians JA, et al. Extrinsic ion migration in perovskite solar cells. Energy and Environmental Science. 2017;10(5):1234 –1242. DOI: 10.1039/C7EE00358G.
- Zhang T, Cheung S-H, Meng X, Zhu L, Bai Y, Ho CHY, et al. Pinning down the anomalous light soaking effect towards high performance and fast response perovskite solar cells: the ion-migration induced charge accumulation. Journal of Physical Chemistry Letters. 2017;8(20):5069 –5076. DOI: 10.1021/acs.jpclett.7b02160.
- Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE, Ziffer ME, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science. 2015;348(6235):683– 686. DOI: 10.1126/science.aaa5333.
- Hu J, Gottesman R, Gouda L, Kama A, Priel M, Tirosh S, et al. Photovoltage behavior in perovskite solar cells under light-soa king showing photoinduced interfacial changes. ACS Energy Letters. 2017;2(5):950 – 956. DOI: 10.1021/acsenergylett.7b00212.
- Hoke ET, Slotcavage DJ, Dohner ER, Bowring AR, Karunadasa HI, McGehee MD. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science. 2015;6(1):613– 617. DOI: 10.1039/C4SC03141E.
- Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano. 2014;8(10):9815– 9821. DOI: 10.1021/nn5036476.
- Yue Y, Salim NT, Wu Y, Yang X, Islam A, Chen W, et al. Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials. Advanced Materials. 2016;28(48):10738 –10743. DOI: 10.1002/adma.201602822.
- Ahmed GhH, Yin J, Bose R, Sinatra L, Alarousu E, Yengel E, et al. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals. Chemistry of Materials. 2017;29(10):4393– 4400. DOI: 10.1021/acs.chemmater.7b00872.
- Yang D, Yang R, Ren X, Zhu X, Yang Z, Li C. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Advanced Materials. 2016;28(26):5206 –5213. DOI: 10.1002/adma.201600446.
- Ščajev P, Qin C, Aleksiejunas RN, Baronas P, Miasojedovas S, Fujihara T, et al. Diffusion enhancement in highly excited MAPbI3 perovskite layers with additives. Journal of Physical Chemistry Letters. 2018;9(12):3167–3172. DOI: 10.1021/acs.jpclett.8b01155.
- Joule JA, Mills K. Heterocyclic Chemistry. Oxford: Blackwell; 2002. 589 p.
- Russian edition: Dzhoul’ DzhA, Mills K. Khimiya geterotsiklicheskikh soedinenii. Zaitseva FV, Karchava AV, translators. Moscow: Mir; 2004. 728 p.
- Speranza M. The reactivity of heteroaromatic compounds in gas phase. Advances in Heterocyclic Chemistry. 1986;40:25–104. DOI: 10.1016/S0065-2725(08)60091-4.
- Arnett EM, Chawla B. Complete thermodynamic analysis of the hydration of thirteen pyridines and pyridinium ions. The special case of 2,6-di-tert-butylpyridine. Journal of the American Chemical Society. 1979;101(24):7141–7146. DOI: 0.1021/ja00518a001.
Copyright (c) 2019 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)