Influence of pyridine treatment on the optical properties of organic-inorganic perovskite films

  • Natallia S. Mahon Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Tatyana Y. Zelenyak Dubna State University, 19 Universitetskaya Street, Dubna 141982, Moscow region, Russia
  • Olga V. Korolik Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Pavel P. Gladyshev Dubna State University, 19 Universitetskaya Street, Dubna 141982, Moscow region, Russia
  • Alexander V. Mazanik Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

The pyridine treated films of organic-inorganic perovskites with CH3NH3PbI3 and CH3NH3Pb(I0,57Cl0,43)3 composition were studied. An analysis of the transmission and photoluminescence spectra, as well as kinetics of photoluminescence band intensity and mass center under continuous illumination showed that the effect of pyridine on organic-inorganic perovskites is ambiguous, because along with photostabilization (decrease in the rate of change of photoluminescence band parameters under illumination), the substantial decrease of dark stability takes place, which manifests itself in the change of phase composition during storage.

Author Biographies

Natallia S. Mahon, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

postgraduate student at the department of energy physics, faculty of physics

Tatyana Y. Zelenyak, Dubna State University, 19 Universitetskaya Street, Dubna 141982, Moscow region, Russia

postgraduate student at the department of chemistry, new technologies and materials, faculty of natural and engineering sciences

Olga V. Korolik, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); head of the research laboratory of energy-efficient materials and technologies, department of the energy physics, faculty of physics

Pavel P. Gladyshev, Dubna State University, 19 Universitetskaya Street, Dubna 141982, Moscow region, Russia

doctor of science (chemistry), full professor; deputy head of the department of chemistry, new technologies and materials, faculty of natural and engineering science

Alexander V. Mazanik, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of energy physics, faculty of physics

References

  1. Park N-G, Grätzel M, Miyasaka T, editors. Organic-Inorganic Halide Perovskite Photovoltaics. From Fundamentals to Device Architectures. Cham: Springer; 2016. DOI: 10.1007/978-3-319-35114-8.
  2. Song Zh, McElvany Ch, Phillips A, Celik I, Krantz PW, Watthage SC, et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy and Environmental Science. 2017;10(6):1297–1305. DOI: 10.1039/C7EE00757D.
  3. Chen Q, De Marco N, Yang Y, Song T-B, Chen C-C, Zhao H, et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today. 2015;10(3):355–396. DOI: 10.1016/J.NANTOD.2015.04.009.
  4. Zhou D, Zhou T, Tian Yu, Zhu X, Yafang Tu. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials. 2018;2018:15. DOI: 10.1155/2018/8148072.
  5. National Renewable Energy Laboratory (NREL) [Internet]. 2018 [cited 2018 December]. Available from: https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg.
  6. Berhe TA, Su W-N, Chen Ch-Hs, Pan C-J, Cheng J-H, Chen H-M, et al. Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science. 2016;9:323–356. DOI: 10.1039/C5EE02733K.
  7. Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy and Environmental Science. 2016;9(6):1989–1997. DOI: 10.1039/C5EE03874J.
  8. Gottesman R, Zaban A. Perovskites for photovoltaics in the spotlight: photoinduced physical changes and their implications. Accounts of Chemical Research. 2016;49(2):320 –329. DOI: 10.1021/acs.accounts.5b00446.
  9. Yao Y, Wang G, Wu F, Liu D, Lin C, Rao X, et al. The interface degradation of planar organic-inorganic perovskite solar cell traced by light beam induced current (LBIC). RSC Advances. 2017;7(68):42973– 42978. DOI: 10.1039/C7RA06423C.
  10. Zhao Y, Zhou W, Tan H, Fu R, Li Q, Lin F, et al. Mobile-ion-induced degradation of organic hole-selective layers in perovskite solar cells. Journal of Physical Chemistry C. 2017;121(27):14517–14523. DOI: 10.1021/acs.jpcc.7b04684.
  11. DeQuilettes DW, Zhang W, Burlakov VM, Graham DJ, Leijtens T, Osherov A, et al. Photo-induced halide redistribution in organic-inorganic perovskite films. Nature Communications. 2016;7:9. DOI: 10.1038/ncomms11683.
  12. Li Zh, Xiao Ch, Yang Ye, Harvey SP, Kim DH, Christians JA, et al. Extrinsic ion migration in perovskite solar cells. Energy and Environmental Science. 2017;10(5):1234 –1242. DOI: 10.1039/C7EE00358G.
  13. Zhang T, Cheung S-H, Meng X, Zhu L, Bai Y, Ho CHY, et al. Pinning down the anomalous light soaking effect towards high performance and fast response perovskite solar cells: the ion-migration induced charge accumulation. Journal of Physical Chemistry Letters. 2017;8(20):5069 –5076. DOI: 10.1021/acs.jpclett.7b02160.
  14. Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE, Ziffer ME, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science. 2015;348(6235):683– 686. DOI: 10.1126/science.aaa5333.
  15. Hu J, Gottesman R, Gouda L, Kama A, Priel M, Tirosh S, et al. Photovoltage behavior in perovskite solar cells under light-soa king showing photoinduced interfacial changes. ACS Energy Letters. 2017;2(5):950 – 956. DOI: 10.1021/acsenergylett.7b00212.
  16. Hoke ET, Slotcavage DJ, Dohner ER, Bowring AR, Karunadasa HI, McGehee MD. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science. 2015;6(1):613– 617. DOI: 10.1039/C4SC03141E.
  17. Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano. 2014;8(10):9815– 9821. DOI: 10.1021/nn5036476.
  18. Yue Y, Salim NT, Wu Y, Yang X, Islam A, Chen W, et al. Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials. Advanced Materials. 2016;28(48):10738 –10743. DOI: 10.1002/adma.201602822.
  19. Ahmed GhH, Yin J, Bose R, Sinatra L, Alarousu E, Yengel E, et al. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals. Chemistry of Materials. 2017;29(10):4393– 4400. DOI: 10.1021/acs.chemmater.7b00872.
  20. Yang D, Yang R, Ren X, Zhu X, Yang Z, Li C. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Advanced Materials. 2016;28(26):5206 –5213. DOI: 10.1002/adma.201600446.
  21. Ščajev P, Qin C, Aleksiejunas RN, Baronas P, Miasojedovas S, Fujihara T, et al. Diffusion enhancement in highly excited MAPbI3 perovskite layers with additives. Journal of Physical Chemistry Letters. 2018;9(12):3167–3172. DOI: 10.1021/acs.jpclett.8b01155.
  22. Joule JA, Mills K. Heterocyclic Chemistry. Oxford: Blackwell; 2002. 589 p.
  23. Russian edition: Dzhoul’ DzhA, Mills K. Khimiya geterotsiklicheskikh soedinenii. Zaitseva FV, Karchava AV, translators. Moscow: Mir; 2004. 728 p.
  24. Speranza M. The reactivity of heteroaromatic compounds in gas phase. Advances in Heterocyclic Chemistry. 1986;40:25–104. DOI: 10.1016/S0065-2725(08)60091-4.
  25. Arnett EM, Chawla B. Complete thermodynamic analysis of the hydration of thirteen pyridines and pyridinium ions. The special case of 2,6-di-tert-butylpyridine. Journal of the American Chemical Society. 1979;101(24):7141–7146. DOI: 0.1021/ja00518a001.
Published
2019-05-20
Keywords: photovoltaics, organic-inorganic perovskites, photostability, pyridine, confocal spectroscopy
Supporting Agencies The work was supported by the Belarusian Republican Foundation for Fundamental Research (contract No. Ф16МС-015).
How to Cite
Mahon, N. S., Zelenyak, T. Y., Korolik, O. V., Gladyshev, P. P., & Mazanik, A. V. (2019). Influence of pyridine treatment on the optical properties of organic-inorganic perovskite films. Journal of the Belarusian State University. Physics, 2, 66-72. https://doi.org/10.33581/2520-2243-2019-2-66-72