Influence of the optical fiber deformations for a recirculation period in the optoelectronic perimeter security systems

  • Dmitrii G. Sakhonchik Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Alexander V. Polyakov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

The operation algorithm of the underground recirculation fiber optic system for perimeter protection using WDM-technology of spectral separation of information channels is described. The experimental results of the transverse deformation magnitude of an optical fiber depending on the hardness of the polyurethane foam elastic base, the number of deformation points and the mass of the walking or crawling intruder are presented. A mathematical model of changing time intervals between circulating pulses depending on the magnitude of optical fiber deformations has been developed. This model allows to calculate the value of additional losses depending on the bend radius, bend angle, probability of tunneling radiation from the core into the cladding, parameters of the quartz fiber itself, as well as on the hardness of the elastic base of the sensing element and the number of deformation points. It is shown that in the case of a constant radius of the deforming element R = 4 mm and a single-mode stepped optical fiber for a running intruder, additional time delays of the recirculation period occur 1.1–1.7 ns, for a crawling intruder, this value is within 0.3– 0.9 ns.

Author Biographies

Dmitrii G. Sakhonchik, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

student at the faculty of radiophysics and computer technologies

Alexander V. Polyakov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of physics and aerospace technologies, faculty of radiophysics and computer technologies

References

  1. Polyakov AV, Algina EG. Neurocomputers and fiber-optic technologies, implemented in perimeter security. Military-Industrial Complex. Belarus. 2016;1:60 – 66. Russian.
  2. Juarez JC, Maier EW, Choi KN, Taylor HF. Distributed fiber-optic intrusion sensor system. Journal of Lightwave Techology. 2005;23(6):2081–2087.
  3. Juarez JC, Taylor HF. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Applied Optics. 2007; 46(11):1968 –1971. DOI: 10.1364/AO.46.001968.
  4. Peng F, Wu H, Jia X-H, Rao Y-J, Wang Z-N, Peng Z-P. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Optics Express. 2014;22(11):13804 –13810. DOI: 10.1364/OE.22.013804.
  5. Mahmoud SS, Visagathilagar Y, Katsifolis J. Real-time distributed fiber optic sensor for security systems: performance, event classification and nuisance mitigation. Photonic sensors. 2012;2(3):225–236. DOI: 10.1007/s13320-012-0071-6.
  6. Ye W, Zhu Q, You T. Developments in distributed optical fiber detection technology. In: Czarske J, Zhang S, Sampson D, Wang W, Liao Y, editors. International Symposium on Optoelectronic Technology and Application: Laser and Optical Measurement Technology; and Fiber Optic Sensors. Proceedings of SPIE. Volume 9297. Beijing: SPIE; 2014. Article ID: 92972T. DOI: 10.1117/12.2071380.
  7. Yuan L, Dong Y. Loop topology based white light interferometric fiber optic sensor network for application of perimeter security. Photonic Sensors. 2011:1(3):260 –267. DOI: 10.1007/s13320-010-0009-9.
  8. Wu H, Rao Y, Tang C, Wu Y, Gong Y. A novel FBG-based security fence enabling to detect extremely weak intrusion signals from nonequivalent sensor nodes. Sensors and Actuators A: Physical. 2011;167(2):548–555. DOI: 10.1016/j.sna.2011.02.046.
  9. Li S, Vf J, Hu J. Rockfall hazard alarm strategy based on FBG smart passive net structure. Photonic sensors. 2015;5(1):19 –23. DOI: 10.1007/s13320-014-0203-2.
  10. Wu H, Qian Y, Zhang W, Li H, Xie X. Intelligent detection and identification in fiber-optical perimeter intrusion monitoring system based on the FBG sensor network. Photonic Sensors. 2015;5(4):365–375. DOI: 10.1007/s13320-015-0274-8.
  11. Polyakov AV. Retsirkulyatsionnye optovolokonnye izmeritel’nye sistemy [Recirculation fiber optic measuring systems]. Minsk: Belarusian State University; 2014. 208 p. Russian.
  12. Polyakov AV. Fiber-optic perimeter security system based on WDM technology. In: Huckridge DA, Ebert R, Bürsing H, editors. Electro-Optical and Infrared Systems: Technology and Applications XIV. Proceedings of SPIE. Volume 10433. Warsaw: SPIE; 2017. Article ID: 104330C. DOI: 10.1117/12.2278131.
  13. Polyakov АV, Ksenofontov МА, Sakhonchik DG. [Fiber optic recirculation alarm system based on WDM technology]. In: Opto-, mikro- i SVCh-elektronika – 2018. Sbornik nauchnykh statei I Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii; 22–26 oktyabrya 2018 g.; Minsk, Belarus [Opto-, microwave and SHF-electronics. Proceedings of the I International scientific and technology conference; 2018 October 22–26; Minsk, Belarus]. Minsk: B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus; 2018. p. 262–265. Russian.
  14. Aksenov VA, Voloshin VV, Vorob’ev IL, Ivanov GA, Isaev VA, Kolosovskii AO, et al. Losses in single-mode optical fibers occurring in isolated bends of small radius: rectangular profile of refractive index. Radiotekhnika i elektronika. 2004;49(6):734 –742. Russian.
  15. Heiblum M, Harris JH. Analysis of curved optical waveguides by conformal transformation. IEEE Journal Quantum Electronics. 1975;11(2):75–83. DOI: 10.1109/JQE.1975.1068563.
  16. Sakai J, Kimura T. Analytical bending loss formula of optical fibers with field deformation. Radio Science. 1982;17(1):21–29. DOI: 10.1029/RS017i001p00021.
  17. Danielsen P, Yevick D. Propagation beam analysis of bent optical waveguides. Journal of Optical Communications. 1983;4(3):94 – 98. DOI: 10.1515/JOC.1983.4.3.94.
  18. Baets R, Lagasse IE. Loss calculation design of arbitrary curved integrated optic waveguides. Journal of the Optical Society of America. 1983;73(2):177–182.
  19. Schermer RT, Cole JH. Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE Journal of Quantum Electronics. 2007;43(10):899 – 909. DOI: 10.1109/JQE.2007.903364.
  20. Zendehnam A, Mirzaei M, Farashiani A, Horabadi L. Investigation of bending loss in a single-mode optical fibre. Pramana Journal of Physics. 2010;74(4):591– 603. DOI: 10.1007/s12043-010-0052-5.
  21. Salleh MFM, Zakaria Z. Effect of bending optical fibre on bend loss over a long period of time. ARPN Journal of Engineering and Applied Sciences. 2015;10(16):6732– 6736.
Published
2019-05-24
Keywords: fiber optic system, perimeter security, recirculation period, deformation, optical fiber loss, time delays
How to Cite
Sakhonchik, D. G., & Polyakov, A. V. (2019). Influence of the optical fiber deformations for a recirculation period in the optoelectronic perimeter security systems. Journal of the Belarusian State University. Physics, 2, 112-124. https://doi.org/10.33581/2520-2243-2019-2-112-124