Multislit diffraction grating spectrometer with mirror lens for imaging spectroscopy

  • Igor M. Gulis Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Alexander G. Kupreyeu Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus
  • Ivan D. Demidov Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

Abstract

Multislit dispersion spectrometers with the snapshot I(xy, λ) data cube registration are effectively used for imaging spectroscopy. Using a diffraction grating, instead of a common prism, enables one to increase substantially the number of registered spectral channels. In the present paper we propose the optical design of a multislit dispersion spectrometer with off-axis parabolic mirror lenses. Owing to these mirrors, the optical system becomes simpler and mostly achromatic, possible working spectral range is extended to ~0.3-2.0 m. For the mirror lens in the scheme described, the focal distance of a parent parabola is 127 mm, the effective focal distance is 136.12 mm, the working diameter - 50.8 mm, the optical axis deflection angle - 30. As demonstrated by computer simulation using the optical design program, the proposed scheme makes it possible to cover the whole, e. g., visible range (450-750 nm), FWHM in the dispersion direction being no more than 15 m at the resolution limit dλ ≤ 10 nm. The possibility for variations in the dispersion and spectral range by the grating replacement or movement along the optical axis is analyzed.

Author Biographies

Igor M. Gulis, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics); professor at the department of laser physics and spectroscopy, faculty of physics

Alexander G. Kupreyeu, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); researcher at the laboratory of nonlinear optics and spectroscopy, department of laser physics and spectroscopy and department of physical optics, faculty of physics

Ivan D. Demidov, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus

postgraduate student at the department of laser physics and spectroscopy, faculty of physics

References

  1. Lu G., Fei B. Medical hyperspectral imaging: a review. J. Biomed. Opt. 2014. Vol. 19, No. 1. Article ID: 010901. DOI: 10.1117/1.JBO.19.1.010901.
  2. Thompson D. R., Leifer I., Bovensmann H., et al. Real-time remote detection and measurement for airborne imaging spectrosco-py: a case study with methane. Atmos. Meas. Tech. 2015. Vol. 8, No. 10. P. 4383–4397. DOI: 10.5194/amt-8-4383-2015.
  3. Gao L., Smith R. T. Optical hyperspectral imaging in microscopy and spectroscopy – a review of data acquisition. J. Biopho-tonics. 2015. Vol. 8, issue 6. P. 441–456. DOI: 10.1002/jbio.201400051.
  4. Kuula J., Pölönen I., Puupponen H.-H., et al. Using VIS/NIR and IR spectral cameras for detecting and separating crime scenedetails. Proc. SPIE. 2012. Vol. 8359. P. 83590P-1–83590P-11. DOI: 10.1117/12.918555.
  5. Qin J., Chao K., Kim M. S., et al. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng.2013. Vol. 118, issue 2. P. 157–171. DOI: 10.1016/j.jfoodeng.2013.04.001.
  6. Torabzadeh H., Morsdorf F., Schaepman M. E. Fusion of imaging spectroscopy and airborne laser scanning data for characteri-zation of forest ecosystems : a review. ISPRS J. Photogramm. Remote Sens. 2014. Vol. 97. P. 25–35. DOI: 10.1109/igarss.2014.6946660.
  7. Lefebvre J. Real time hyperspectroscopy for dynamical study of carbon nanotubes. ACS Nano. 2016. Vol. 10, issue 10.P. 9602–9607. DOI: 10.1021/acsnano.6b05077.
  8. HagenN., KudenovM.W. Review of snapshot spectral imaging technologies. Opt. Eng.2013. Vol.52, No.9. P.090901-1–090901-23.DOI: 10.1117/1.OE.52.9.090901.
  9. Sugai H., Hattori T., Kawai A., et al. The Kyoto tridimensional spectrograph II on Subaru and the University of Hawaii 88-intelescopes. Publ. Astron. Soc. Pac. 2010. Vol. 122, No. 887. P. 103–118. DOI: 10.1086/650397.
  10. Bodkin A., Sheinis A., Norton A., et al. Snapshot hyperspectral imaging – the hyperpixel array camera. Algorithms and tech-nologies for multispectral, hyperspectral, and ultraspectral imagery XV (Orlando, 13–17 April, 2009) : proc. SPIE. 2009. Vol. 7334.P. 73340H-1–73340H-11.
  11. Gulis I. M., KupreyeuA. G., Demidov I. D., et al. Multislit diffraction grating spectrometer for imaging spectroscopy. J. Bela-rus. State Univ. Phys. 2017. No. 3. P. 4–11 (in Russ.).
  12. Voropai E. S., Gulis I. M., Kupreev A. G. Astigmatism correction for a large-aperture dispersive spectrometer. J. Appl. Spect-rosc. 2008. Vol. 75, issue 1. P. 150–155. DOI: 10.1007/s10812-008-9000-2.
Published
2019-01-20
Keywords: multispectral, dispersive, diffraction grating, multislit, mirror parabolic lens
How to Cite
Gulis, I. M., Kupreyeu, A. G., & Demidov, I. D. (2019). Multislit diffraction grating spectrometer with mirror lens for imaging spectroscopy. Journal of the Belarusian State University. Physics, 2, 4-10. Retrieved from https://journals.bsu.by/index.php/physics/article/view/480