Structure, photo- and electroluminescence of silicon  dioxide implanted with high fluensies of tin ions

  • Ivan A. Romanov Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Maxim A. Makhavikou A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, 7 Kurčatava Street, Minsk 220108, Belarus
  • Fadei F. Komarov A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, 7 Kurčatava Street, Minsk 220108, Belarus
  • Oleg V. Milchanin A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, 7 Kurčatava Street, Minsk 220108, Belarus
  • Irina N. Parkhomenko Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Liudmila A. Vlasukova Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus
  • Elke Wendler Friedrich-Schiller-Universität Jena, 1 Max-Wien-Platz, Jena 07743, Germany
  • Alexander V. Mudryi Scientific and Practical Material Research Center, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus
  • Vadim D. Zhivulko Scientific and Practical Material Research Center, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus

Abstract

Samples of SiO2/Si have been implanted with tin ions (200 and 80 keV, 5 ⋅ 1016 and 1 ⋅ 1017 cm-2) at room tempera- ture and afterwards annealed at 800 and 900 °C for 60 min in air ambient. The structural and light emission properties of (SiO2 + Sn-based nanoclusters) composites have been studied using Rutherford backscattering spectroscopy, transmission electron microscopy in cross-section geometry, photo- and electroluminescence. For the as-implanted samples it has been shown the formation of metal β-Sn nanoclusters layer in oxide matrix. The heat treatment in oxidation ambient results in structural transformation of implanted layers. The initially flat surface of the sample becomes irregular (wave-like) and dendrites are formed in subsurface region of oxide film. The appearance of dendrites is most probably due to the SnO2 phase formation. Strong «violet» photo- and electroluminescence (∼3.1 eV) is observed for SiO2/Si sample after annealing. One could conclude from photo- and electroluminescence spectra correlation that the emission centers are the same for the both cases. The nature of the observed emission is discussed.

Author Biographies

Ivan A. Romanov, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

postgraduate student at the department of  physical electronics and nanotechnology, faculty of radiophysics and computer technologies

Maxim A. Makhavikou, A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, 7 Kurčatava Street, Minsk 220108, Belarus

junior researcher at the elionics laboratory

Fadei F. Komarov, A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, 7 Kurčatava Street, Minsk 220108, Belarus

corresponding member of National Academy of Sciences of Belarus, doctor of science (physics and mathematics), full professor; head of the elionics laboratory

Oleg V. Milchanin, A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, 7 Kurčatava Street, Minsk 220108, Belarus

senior researcher at the elionics laboratory

Irina N. Parkhomenko, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics); senior  researcher at the research and development laboratory of materials and device structures for micro- and nanoelectronics

Liudmila A. Vlasukova, Belarusian State University, Niezaliežnasci Avenue, 4, 220030, Minsk, Belarus

PhD (physics and mathematics); head  of the research and development laboratory of materials and device structures for micro- and nanoelectronics

Elke Wendler, Friedrich-Schiller-Universität Jena, 1 Max-Wien-Platz, Jena 07743, Germany

PhD (physics); professor at the faculty of physics and astronomy, Institute of Solid State Physics

Alexander V. Mudryi, Scientific and Practical Material Research Center, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus

PhD (physics and mathematics); chief  researcher

Vadim D. Zhivulko, Scientific and Practical Material Research Center, National Academy of Sciences of Belarus, 19 P. Broŭki Street, Minsk 220072, Belarus

junior researcher

References

  1. Huang Sh, Cho EC, Conibear G, Green M. Structural and photoluminescence properties of superlattice structures consisting of Sn-rich SiO2 and stoichiometric SiO2 layers. Thin Solid Films. 2011;520:641– 645. DOI: 10.1016/j.tsf.2011.08.027.
  2. Chiodini N, Paleari A, DiMartino D, Spinolo G. SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system. Applied Physics Letters. 2002;81(9):1702–1704. DOI: 10.1063/1.1503154.
  3. Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A. Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices. Nature Communications. 2012;3:690(9). DOI: 10.1038/ncomms1683. 4. Park JJ, Kim KK, Roy M, Panks SM. Characterization of SnO2 thin films grown by pulsed laser deposition under transverse magnetic field. Rapid Communication in Photoscience. 2015;4(3):50 –53. DOI: 10.5857/RCP.2015.4.3.50. 5. Kim HW, Kim NH, Myung JH, Shim SH. Characteristics of SnO2 fishbone-like nanostructures prepared by the thermal evaporation. Physica Status Solidi A. 2005;202(9):1758 –1762. DOI: 10.1002/pssa.200520031.
  4. Rebohle L, von Borany J, Fröb H, Skorupa W. Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements. Applid Physics B. 2000;71(2):131–151. DOI: 10.1007/PL00006966. 7. Spiga S, Mantovan R, Fanciuli M, Ferretti N, Boscherini F, d’Acapito F, et al. Local structure of Sn implanted in thin SiO2 films. Physical Review B. 2003;68(20):205419(10). DOI: 10.1103/PhysRevB.68.205419. 8. Lopes JMJ, Zawislak FC, Fichtner PFP. Effect of annealing atmosphere on the structure and luminescence of Sn-implanted SiO2 layers. Applied Physics Letters. 2005;86(2):023101(1–3). DOI: 10.1063/1.1849855. 9. Lopes JMJ, Kremer F, Fichtner PFP, Zawislak FC. Correlation between structural evolution and photoluminescence of Sn nanoclusters in SiO2 layers. Nuclean Instruments and Methods in Physics Research Section B. 2006;242(1–2):157–160. DOI: 10.1016/j. nimb.2005.08.013. 10. Tagliente MA, Bello V, Pellegrini G, Mattei G, Mazzoldi P, Massaro M. SnO2 nanoparticles embedded in silica by ion implantation followed by thermal oxidation. Journal of Applied Physics. 2009;106(10):104304(5). DOI: 10.1063/1.3257157.
  5. Zatsepin DA, Zatsepin AF, Boukhvalov DW, Kurmaev EZ, Gavrilov NV. Sn-loss effect in a Sn-implanted a-SiO2 host-matrix after thermal annealing: A combined XPS, PL, and DFT study. Applied Surface Science. 2016;367:320 –326. DOI: 10.1016/j. apsusc.2016.01.126. 12. Kuiri PK, Lenka HP, Ghatak J, Sahn G, Jaseph B, Mahapatra DP. Formation and growth of SnO2 nanoparticles in silica glass by Sn implantation and annealing. Journal Applied Physics. 2007;102(2):024315(5). DOI: 10.1063/1.2761778.
  6. Kim TW, Lee DU, Yoon YS. Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. Journal of Applied Physics. 2000;88(6):3759–3761. DOI: 10.1063/1.1288021.
  7. Jeong J, Choi SP, Chang CI, Shin DC, Park JS, Lee B-T, et al. Photoluminescence properties of SnO2 thin films grown by thermal CVD. Solid State Commun. 2003;127(9–10):595–597. DOI: 10.1016/S0038-1098(03)00614-8. 15. Liu LZ, Wu XL, Xu JQ, Li TH, Shen JC, Chu PK. Oxygen-vacancy and depth-dependent violet double-peak luminescence from ultrathin cuboid SnO2 nanocrystals. Applied Physics Letters. 2012;100(12):121903(4). DOI: 10.1063/1.3696044. 16. Henrie J, Kellis S, Schultz SM, Hawkins A. Electronic color charts for dielectric films on silicon. Optics Express. 2004;12(7):1464 –1469. DOI: 10.1364/OPEX.12.001464. 17. Park Y, Choong V, Gao Y, Hsieh BR, Tang CW. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Applied Physics Letters. 1996;68(19):2699–2701. DOI: 10.1063/1.116313.
  8. Karim MM, Holland D. Physical Properties of Glasses in the System SnO – SiO2. Physics and Chemistry of Glasses. 1995; 36(5):206 –210.
  9. Volf MB. Chemical Approach to Glass. Oxford: Elsevier; 1984.
  10. Wei T-Y, Lu S-Y, Chang Y-C. Rich photoluminescence of SnO2 – SiO2 composite aerogels prepared with a co-fed precursor solgel process. Journal Chinese Institute of Chemical Engineers. 2007;38(5– 6):477– 481. DOI: 10.1016/j.jcice.2007.05.002. 21. Chen R, Xing GZ, Gao J, Zhang Z, Wu T, Sun HD. Characteristics of ultraviolet photoluminescence from high quality tin oxide nanowires. Applied Physics Letters. 2009;95(6):061908(3). DOI: 10.1063/1.3205122. 22. Li Sh, Zhong Xi, Song Y, Shen X, Sun J, Song Y, et al. Controlled hybridization of Sn – SnO2 nanoparticles via simple-programmed microfluidic processes for tunable ultraviolet and blue emissions. Journal of Materials Chemistry C. 2014;2(36):7687–7694. DOI: 10.1039/C4TC00842A. 23. An HH, Lee SJ, Baek SH, Han WB, Kim YH, Yoon CS, et al. Effect of plasma etching on photoluminescence of SnOx /Sn nanoparticles deposited on DOPC lipid membrane. Journal of Colloid and Interface Science. 2012;368(1):257–262. DOI: 10.1016/j. jcis.2011.11.076. 24. Vlasukova LA, Komarov FF, Yuvchenko VN, Kislitsin S. Threshold and criterion for ion track etching in SiO2 layer grown on Si. Vacuum. 2014;105:107–110. DOI: 10.1016/j.vacuum.2014.01.005.
  11. Morosanu CE. Thin Films by Chemical Vapour Deposition. New York: Elsevier; 1990. 26. DiMaria DJ, Stasiak JW. Trap creation in silicon dioxide produced by hot electrons. Journal of Applied Physics. 1989;65(6): 2342–2356. DOI: 10.1063/1.342824. 27. Baraban AP, Egorov DV, Askinazi AY, Mieloglyadova LV. Electroluminescence of Si – SiO2 – Si3N4 structures. Technical Physics Letters. 2015;28(12):978–980. DOI: 10.1134/1.1535507.
Published
2019-01-20
Keywords: SiO2 films, high-fluence Sn  implantation, annealing in air, nanoclusters, photo- and electroluminescence
Supporting Agencies This research was partly supported by Belarusian Republican Foundation for Fundamental Research (grant No. Ф17М-053).
How to Cite
Romanov, I. A., Makhavikou, M. A., Komarov, F. F., Milchanin, O. V., Parkhomenko, I. N., Vlasukova, L. A., Wendler, E., Mudryi, A. V., & Zhivulko, V. D. (2019). Structure, photo- and electroluminescence of silicon  dioxide implanted with high fluensies of tin ions. Journal of the Belarusian State University. Physics, 3, 54-64. Retrieved from https://journals.bsu.by/index.php/physics/article/view/504