Structure, photo- and electroluminescence of silicon dioxide implanted with high fluensies of tin ions
Abstract
Samples of SiO2/Si have been implanted with tin ions (200 and 80 keV, 5 ⋅ 1016 and 1 ⋅ 1017 cm-2) at room tempera- ture and afterwards annealed at 800 and 900 °C for 60 min in air ambient. The structural and light emission properties of (SiO2 + Sn-based nanoclusters) composites have been studied using Rutherford backscattering spectroscopy, transmission electron microscopy in cross-section geometry, photo- and electroluminescence. For the as-implanted samples it has been shown the formation of metal β-Sn nanoclusters layer in oxide matrix. The heat treatment in oxidation ambient results in structural transformation of implanted layers. The initially flat surface of the sample becomes irregular (wave-like) and dendrites are formed in subsurface region of oxide film. The appearance of dendrites is most probably due to the SnO2 phase formation. Strong «violet» photo- and electroluminescence (∼3.1 eV) is observed for SiO2/Si sample after annealing. One could conclude from photo- and electroluminescence spectra correlation that the emission centers are the same for the both cases. The nature of the observed emission is discussed.
References
- Huang Sh, Cho EC, Conibear G, Green M. Structural and photoluminescence properties of superlattice structures consisting of Sn-rich SiO2 and stoichiometric SiO2 layers. Thin Solid Films. 2011;520:641– 645. DOI: 10.1016/j.tsf.2011.08.027.
- Chiodini N, Paleari A, DiMartino D, Spinolo G. SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system. Applied Physics Letters. 2002;81(9):1702–1704. DOI: 10.1063/1.1503154.
- Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A. Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices. Nature Communications. 2012;3:690(9). DOI: 10.1038/ncomms1683. 4. Park JJ, Kim KK, Roy M, Panks SM. Characterization of SnO2 thin films grown by pulsed laser deposition under transverse magnetic field. Rapid Communication in Photoscience. 2015;4(3):50 –53. DOI: 10.5857/RCP.2015.4.3.50. 5. Kim HW, Kim NH, Myung JH, Shim SH. Characteristics of SnO2 fishbone-like nanostructures prepared by the thermal evaporation. Physica Status Solidi A. 2005;202(9):1758 –1762. DOI: 10.1002/pssa.200520031.
- Rebohle L, von Borany J, Fröb H, Skorupa W. Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements. Applid Physics B. 2000;71(2):131–151. DOI: 10.1007/PL00006966. 7. Spiga S, Mantovan R, Fanciuli M, Ferretti N, Boscherini F, d’Acapito F, et al. Local structure of Sn implanted in thin SiO2 films. Physical Review B. 2003;68(20):205419(10). DOI: 10.1103/PhysRevB.68.205419. 8. Lopes JMJ, Zawislak FC, Fichtner PFP. Effect of annealing atmosphere on the structure and luminescence of Sn-implanted SiO2 layers. Applied Physics Letters. 2005;86(2):023101(1–3). DOI: 10.1063/1.1849855. 9. Lopes JMJ, Kremer F, Fichtner PFP, Zawislak FC. Correlation between structural evolution and photoluminescence of Sn nanoclusters in SiO2 layers. Nuclean Instruments and Methods in Physics Research Section B. 2006;242(1–2):157–160. DOI: 10.1016/j. nimb.2005.08.013. 10. Tagliente MA, Bello V, Pellegrini G, Mattei G, Mazzoldi P, Massaro M. SnO2 nanoparticles embedded in silica by ion implantation followed by thermal oxidation. Journal of Applied Physics. 2009;106(10):104304(5). DOI: 10.1063/1.3257157.
- Zatsepin DA, Zatsepin AF, Boukhvalov DW, Kurmaev EZ, Gavrilov NV. Sn-loss effect in a Sn-implanted a-SiO2 host-matrix after thermal annealing: A combined XPS, PL, and DFT study. Applied Surface Science. 2016;367:320 –326. DOI: 10.1016/j. apsusc.2016.01.126. 12. Kuiri PK, Lenka HP, Ghatak J, Sahn G, Jaseph B, Mahapatra DP. Formation and growth of SnO2 nanoparticles in silica glass by Sn implantation and annealing. Journal Applied Physics. 2007;102(2):024315(5). DOI: 10.1063/1.2761778.
- Kim TW, Lee DU, Yoon YS. Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. Journal of Applied Physics. 2000;88(6):3759–3761. DOI: 10.1063/1.1288021.
- Jeong J, Choi SP, Chang CI, Shin DC, Park JS, Lee B-T, et al. Photoluminescence properties of SnO2 thin films grown by thermal CVD. Solid State Commun. 2003;127(9–10):595–597. DOI: 10.1016/S0038-1098(03)00614-8. 15. Liu LZ, Wu XL, Xu JQ, Li TH, Shen JC, Chu PK. Oxygen-vacancy and depth-dependent violet double-peak luminescence from ultrathin cuboid SnO2 nanocrystals. Applied Physics Letters. 2012;100(12):121903(4). DOI: 10.1063/1.3696044. 16. Henrie J, Kellis S, Schultz SM, Hawkins A. Electronic color charts for dielectric films on silicon. Optics Express. 2004;12(7):1464 –1469. DOI: 10.1364/OPEX.12.001464. 17. Park Y, Choong V, Gao Y, Hsieh BR, Tang CW. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Applied Physics Letters. 1996;68(19):2699–2701. DOI: 10.1063/1.116313.
- Karim MM, Holland D. Physical Properties of Glasses in the System SnO – SiO2. Physics and Chemistry of Glasses. 1995; 36(5):206 –210.
- Volf MB. Chemical Approach to Glass. Oxford: Elsevier; 1984.
- Wei T-Y, Lu S-Y, Chang Y-C. Rich photoluminescence of SnO2 – SiO2 composite aerogels prepared with a co-fed precursor solgel process. Journal Chinese Institute of Chemical Engineers. 2007;38(5– 6):477– 481. DOI: 10.1016/j.jcice.2007.05.002. 21. Chen R, Xing GZ, Gao J, Zhang Z, Wu T, Sun HD. Characteristics of ultraviolet photoluminescence from high quality tin oxide nanowires. Applied Physics Letters. 2009;95(6):061908(3). DOI: 10.1063/1.3205122. 22. Li Sh, Zhong Xi, Song Y, Shen X, Sun J, Song Y, et al. Controlled hybridization of Sn – SnO2 nanoparticles via simple-programmed microfluidic processes for tunable ultraviolet and blue emissions. Journal of Materials Chemistry C. 2014;2(36):7687–7694. DOI: 10.1039/C4TC00842A. 23. An HH, Lee SJ, Baek SH, Han WB, Kim YH, Yoon CS, et al. Effect of plasma etching on photoluminescence of SnOx /Sn nanoparticles deposited on DOPC lipid membrane. Journal of Colloid and Interface Science. 2012;368(1):257–262. DOI: 10.1016/j. jcis.2011.11.076. 24. Vlasukova LA, Komarov FF, Yuvchenko VN, Kislitsin S. Threshold and criterion for ion track etching in SiO2 layer grown on Si. Vacuum. 2014;105:107–110. DOI: 10.1016/j.vacuum.2014.01.005.
- Morosanu CE. Thin Films by Chemical Vapour Deposition. New York: Elsevier; 1990. 26. DiMaria DJ, Stasiak JW. Trap creation in silicon dioxide produced by hot electrons. Journal of Applied Physics. 1989;65(6): 2342–2356. DOI: 10.1063/1.342824. 27. Baraban AP, Egorov DV, Askinazi AY, Mieloglyadova LV. Electroluminescence of Si – SiO2 – Si3N4 structures. Technical Physics Letters. 2015;28(12):978–980. DOI: 10.1134/1.1535507.
Copyright (c) 2018 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)