Effect of ultraviolet exposure on the optical properties of silicon-based dielectrics

  • Irina N. Parkhomenko Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Liudmila A. Vlasukova Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Alexander S. Kamyshan A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, 7 Kurchatava Street, Minsk 220045, Belarus
  • Natalya S. Kovalchuk «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus
  • Sergey A. Demidovich «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus

Abstract

The effect of ultraviolet range of solar spectrum (185–400 nm) exposure for 6 h with an energy flux density 20 times higher than the corresponding parameter of natural solar radiation on the optical properties of silicon-based dielectric layers on silicon was studied. Silicon nitride (SiNx), oxide (SiOx) and oxynitride (SiOxNy) films with thicknesses of 11–25 nm were deposited by inductively coupled plasma chemical vapor deposition method. The reflectance spectra of thin dielectric films were analysed before and after ultraviolet exposure. It has been shown that ultraviolet irradiation results in an increase of the refractive index of the silicon-rich SiNx and SiOx films by Δn = 0.03–0.09, while the refractive index of the SiOxNy film remains almost unchanged (Δn < 0.01). Analysis of the infrared spectra did not reveal any changes in the chemical composition of the dielectric films after ultraviolet irradiation. The origin of the effect of ultraviolet exposure on the optical properties of silicon-based dielectric films of various elemental and structural compositions is discussed. The reported results can be used when choosing dielectrics for devices operating in outer space in low Earth orbits.

Author Biographies

Irina N. Parkhomenko, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); leading researcher at the laboratory of materials and device structures for micro- and nanoelectronics, faculty of radiophysics and computer technologies

Liudmila A. Vlasukova, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics); head of the laboratory of materials and device structures for micro- and nanoelectronics, faculty of radiophysics and computer technologies

Alexander S. Kamyshan, A. N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, 7 Kurchatava Street, Minsk 220045, Belarus

PhD (physics and mathematics); leading researcher at the laboratory of elionics

Natalya S. Kovalchuk, «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus

PhD (engineering), docent; deputy general director and chief engineer

Sergey A. Demidovich, «Integral» – Holding Management Company, 121a Kazinca Street, Minsk 220108, Belarus

leading engineer at the branch laboratory of new technologies and materials

References

  1. Novikov LS. Space material science in the present and in future. Vestnik Moskovskogo universiteta. Seriya 3, Fizika. Astronomiya. 2010;4:25–32. Russian.
  2. Didyk PI, Zhukov AA. [Radiation resistance of microelectronic devices under combined effect of destabilising factors of outer space at the design stage]. Kosmicheskie issledovaniya. 2023;61(3):242–247. Russian. DOI: 10.31857/S0023420622600209.
  3. Xu Xu, He Wenyan, Wang Changjun, Wei Ming, Li Bincheng. SiNx thickness dependence of spectral properties and durability of protected-silver mirrors. Surface and Coatings Technology. 2017;324:175–181. DOI: 10.1016/j.surfcoat.2017.05.078.
  4. de O. C. Cintra MP, Santos AL, Silva P, Ueda M, Janke A, Jehnichen D, et al. Characterization of SixOy Nz coating on CF/PPS composites for space applications. Surface and Coatings Technology. 2018;335:159–165. DOI: 10.1016/j.surfcoat.2017.12.036.
  5. de Rooij A. Corrosion in space. In: Blockley R, Shyy W, editors. Encyclopedia of aerospace engineering. Volume 4, Materials technology [Internet]. Chichester: John Wiley & Sons; 2010 [cited 2022 March 21]. p. 1–10. Available from: https://sci-hub.se/10.1002/9780470686652.eae242. DOI: 10.1002/9780470686652.eae242.
  6. Garoli D, Rodriguez De Marcos LV, Larruquert JI, Corso AJ, Proietti Zaccaria R, Pelizzo MG. Mirrors for space telescopes: degradation issues. Applied Sciences. 2020;10(21):7538. DOI: 10.3390/app10217538.
  7. Karanth SP, Sumesh MA, Shobha V, Sirisha J, Yadav DM, Vijay SB, et al. Electro-optical performance study of 4H-SiC/Pd Schottky UV photodetector array for space applications. IEEE Transactions on Electron Devices. 2020;67(8):3242–3249. DOI: 10.1109/TED.2020.3004306.
  8. Sinha A, Qian J, Moffitt SL, Hurst K, Terwilliger K, Miller DC, et al. UV‐induced degradation of high‐efficiency silicon PV modules with different cell architectures. Progress in Photovoltaics: Research and Applications. 2023;31(1):36–51. DOI: 10.1002/pip.3606.
  9. Novikov LS. Kosmicheskoe materialovedenie [Space material science]. Moscow: Maks-press; 2014. 448 p. Russian.
  10. Kuzmenko AB. Kramers – Kronig constrained variational analysis of optical spectra. Review of Scientific Instruments. 2005;76(8):083108. DOI: 10.1063/1.1979470.
  11. Parkhomenko I, Vlasukova L, Komarov F, Kovalchuk N, Demidovich S, Zhussupbekova A, et al. Effect of rapid thermal annealing on Si-based dielectric films grown by ICP-CVD. ACS Omega. 2023;8(33):30768–30775. DOI: 10.1021/acsomega.3c04997.
  12. Chen Kunji, Lin Zewen, Zhang Pengzhan, Huang Rui, Dong Hengping, Huang Xinfan. Luminescence mechanism in amorphous silicon oxynitride films: band tail model or N — Si — O bond defects model. Frontiers in Physics. 2019;7:144. DOI: 10.3389/fphy.2019.00144.
  13. Rudakov G, Reshetnikov I. IR spectra of ICPCVD SiNx thin films for MEMS structures. Journal of Physics: Conference Series. 2015;643:012063. DOI: 10.1088/1742-6596/643/1/012063.
  14. Liu F, Ward S, Gedvilas L, Keyes B, To B, Wang Q, et al. Amorphous silicon nitride deposited by hot-wire chemical vapor deposition. Journal of Applied Physics. 2004;96(5):2973–2979. DOI: 10.1063/1.1775046.
  15. Zhou H, Elgaid K, Wilkinson C, Thayne I. Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition. Japanese Journal of Applied Physics. 2006;45(10S):8388. DOI: 10.1143/JJAP.45.8388.
  16. Huang XD, Gan XF, Zhang F, Huang QA, Yang JZ. Improved electrochemical performance of silicon nitride film by hydrogen incorporation for lithium-ion battery anode. Electrochimica Acta. 2018;268:241–247. DOI: 10.1016/j.electacta.2018.02.117.
  17. Han Sang-Soo, Jun Byung-Hyuk, No Kwangsoo, Bae Byeong-Soo. Preparation of a‐SiNx thin film with low hydrogen content by inductively coupled plasma enhanced chemical vapor deposition. Journal of The Electrochemical Society. 1998;145(2):652–658. DOI: 10.1149/1.1838318.
  18. Levitskii VS, Lenshin AS, Seredin PV, Terukov EI. Investigation of degradation of the optical properties of meso- and macroporous silicon exposed to solar radiation simulator. Fizika i tekhnika poluprovodnikov [Internet]. 2015 [cited 2022 June 7];49(11):1540–1545. Available from: http://journals.ioffe.ru/articles/42457. Russian.
  19. Aouida S, Saadoun M, Boujmil MF, Ben Rabha M, Bessaı̈s B. Effect of UV irradiations on the structural and optical features of porous silicon: application in silicon solar cells. Applied Surface Science. 2004;238(1–4):193–198. DOI: 10.1016/j.apsusc.2004.05.209.
  20. Guiheneuf V, Delaleux F, Pouliquen S, Riou O, Logerais P-O, Durastanti J-F. Effects of the irradiance intensity during UV accelerated aging test on unencapsulated silicon solar cells. Solar Energy. 2017;157:477–485. DOI: 10.1016/j.solener.2017.08.044.
  21. Cai L, Rohatgi A, Yang D, El-Sayed MA. Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films. Journal of Applied Physics. 1996;80(9):5384–5388. DOI: 10.1063/1.363480.
  22. Perez AM, Santiago C, Renero-Carrillo F, Zuniga C. Optical properties of amorphous hydrogenated silicon nitride thin films. Optical Engineering. 2006;45(12):123802. DOI: 10.1117/1.2402493.
  23. Putkonen M, Bosund M, Ylivaara OME, Puurunen RL, Kilpi L, Ronkainen H, et al. Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors. Thin Solid Films. 2014;558:93–98. DOI: 10.1016/j.tsf.2014.02.087.
  24. Baek S, Iftiquar SM, Jang J, Lee S, Kim M, Jung J, et al. Effect of ultraviolet light exposure to boron doped hydrogenated amorphous silicon oxide thin film. Applied Surface Science. 2012;260:17–22. DOI: 10.1016/j.apsusc.2011.12.086.
  25. Lambertz A, Grundler T, Finger F. Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells. Journal of Applied Physics. 2011;109(11):113109. DOI: 10.1063/1.3592208.
  26. Nejadriahi H, Friedman A, Sharma R, Pappert S, Fainman Y, Yu P. Thermo-optic properties of silicon-rich silicon nitride for on-chip applications. Optics Express. 2020;28(17):24951–24960. DOI: 10.1364/OE.396969.
  27. Bucio TD, Lacava C, Clementi M, Faneca J, Skandalos I, Baldycheva A, et al. Silicon nitride photonics for the near-infrared. IEEE Journal of Selected Topics in Quantum Electronics. 2020;26(2):8200613. DOI: 10.1109/JSTQE.2019.2934127.
Published
2024-01-23
Keywords: silicon nitride, silicon oxide, silicon oxynitride, ultraviolet exposure, reflectance
Supporting Agencies This work was supported by the state programme of scientific research «Convergence-2025» (project 3.07.1.2, state registration No. 20211910).
How to Cite
Parkhomenko, I. N., Vlasukova, L. A., Kamyshan, A. S., Kovalchuk, N. S., & Demidovich, S. A. (2024). Effect of ultraviolet exposure on the optical properties of silicon-based dielectrics. Journal of the Belarusian State University. Physics, 1, 57-64. Retrieved from https://journals.bsu.by/index.php/physics/article/view/5808