Structure changes in zirconium after plasma treatment and high-temperature annealing in air atmosphere

  • Vitali I. Shymanski Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Viktorya V. Abramava Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Valiantsin M. Astashynski A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Browki Street, Minsk 220072, Belarus

Abstract

In order to test the possibility of increasing the corrosion resistance of zirconium alloys used as structural materials in nuclear power, the stability of the structure and phase state of zirconium subjected to high-energy plasma exposure and then isothermal annealing in an air atmosphere was investigated. The zirconium samples were processed by pulsed compression plasma flows in an atmosphere of residual gas (nitrogen) with an absorbed energy density that ensured melting of the surface layer and subsequent rapid crystallisation. The result of plasma exposure was the formation of a dispersed grain structure, accompanied by the growth of a thin layer of zirconium nitride (ZrN) and a solid solution of nitrogen in the crystal lattice of the low-temperature phase of zirconium (α-Zr(N)) on the surface. The thermal stability of modified zirconium was studied by isothermal annealing in an open-air atmosphere at a temperature of 350 ℃ for 100 h. Using scanning electron microscopy and X-ray diffraction analysis, diffusion saturation of the near-surface layer of zirconium samples with oxygen atoms leading to the formation of a monoclinic modification of zirconium dioxide (m-ZrO2) and an interstitial solid solution (α-Zr(O)) has been found. It is shown that modification of the structure of the zirconium surface layer by preliminary plasma treatment prevents the formation of m-ZrO2 zirconium dioxide, while increasing the region of existence of the α-Zr(O) solid solution. The formed zirconium nitride layer acts as a barrier to the diffusion penetration of oxygen. However, the decomposition of zirconium nitride, which occurs in the solid phase, leads to an increase in the number of vacant positions in the crystal lattice, facilitating the formation of the α-Zr(O) solid solution. The found peculiarities of structure changes in zirconium after high-temperature annealing make it possible to reduce the weight gain of samples during long-term oxidation in an air atmosphere.

Author Biographies

Vitali I. Shymanski, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; associate professor at the department of solid state physics and nanotechnologies, faculty of physics

Viktorya V. Abramava, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

postgraduate student at the department of solid state physics and nanotechnologies, faculty of physics

Valiantsin M. Astashynski, A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Browki Street, Minsk 220072, Belarus

doctor of science (physics and mathematics), corresponding member of the National Academy of Sciences of Belarus, full professor; head of the laboratory of plasma accelerators physics, department of plasma physics and plasma technologies

References

  1. Bérerd N, Catalette H, Chevarier A, Chevarier N, Faust H, Moncoffre N. Zirconium surface modification under fission product irradiation. Application to nuclear fuel cladding tubes. Surface and Coatings Technology. 2002;158–159:473–476. DOI: 10.1016/S0257-8972(02)00290-6.
  2. Slobodyan M. High-energy surface processing of zirconium alloys for fuel claddings of water-cooled nuclear reactors. Nuclear Engineering and Design. 2021;382:111364. DOI: 10.1016/j.nucengdes.2021.111364.
  3. Калин БА, Волков НВ, Валиков РА, Яшин АС. Анализ процесса ионного перемешивания при легировании внешней поверхности трубок из циркония под действием радиального пучка ионов аргона. Физика и химия обработки материалов. 2016;3:5–8. EDN: WCLOXR.
  4. Kuprin AS, Belous VA, Voyevodin VN, Bryk VV, Vasilenko RL, Ovcharenko VD, et al. High-temperature air oxidation of E110 and Zr – 1Nb alloys claddings with coatings. Problems of Atomic Science and Technology. 2014;1:126–132. EDN: CMJOKV.
  5. Петельгузов ИА. Влияние защитных покрытий из алюминия и хрома на окисление циркония и его сплавов. Вопросы атомной науки и техники. 2012;2:114–119.
  6. Park J-H, Kim H-G, Park J-Y, Jung Y-I, Park D-J, Koo Y-H. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings. Surface and Coatings Technology. 2015;280:256–259. DOI: 10.1016/j.surfcoat.2015.09.022.
  7. Varoto L, Lhuissier P, Majkut M, Blandin J-J, Roure S, Papillon A, et al. Microstructure evolutions induced by electron beam melting of a sintered Cu – 25Cr composite. Materialia. 2024;38:102262. DOI: 10.1016/j.mtla.2024.102262.
  8. Li G, Zhou X, Zhang J, Yuan M, Chen Z. Effects of electron beam current on local microstructure characteristics and tensile behaviors of Ti – 6Al – 4V alloys fabricated by electron beam melting. Materials Science and Engineering A. 2024;912:146966. DOI: 10.1016/j.msea.2024.146966.
  9. Slobodyan M. Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: a review. Nuclear Engineering and Technology. 2021;53(4):1049–1078. DOI: 10.1016/j.net.2020.10.005.
  10. Ryskulov A, Shymanski V, Uglov V, Ivanov I, Astashynski V, Amanzhulov B, et al. Structure and phase composition of WNb alloy formed by the impact of compression plasma flows. Materials. 2023;16(12):4445. DOI: 10.3390/ma16124445.
  11. Cherenda NN, Rogovaya IS, Shymanski VI, Uglov VV, Saladukhin IA, Astashynski VM, et al. Elemental and phase compositions and mechanical properties of titanium surface layer alloyed by Zr, Nb and Al under the action of compression plasma flows. High Temperature Material Processes. 2022;26(2):1–9. DOI: 10.1615/HighTempMatProc.2022043003.
  12. Шиманский ВИ, Шевелева ВВ, Углов ВВ, Асташинский ВМ, Кузьмицкий АМ. Окисление циркония, легированного хромом, при воздействии компрессионных плазменных потоков. Физика и химия обработки материалов. 2023;3:18–32. DOI: 10.30791/0015-3214-2023-3-18-32.
  13. Черняева ТП, Стукалов АИ, Грицина ВМ. Поведение кислорода в цирконии. Вопросы атомной науки и техники. 2000;2:71–85.
  14. Ищенко НИ. Определение коэффициента диффузии кислорода в оксиде на циркониевых сплавах и в прилегающем металле по данным измерений коррозионного привеса и толщины оксидного слоя. Вопросы атомной науки и техники. 2014;4:88–93.
  15. Черенда НН, Шиманский ВИ, Углов ВВ, Асташинский ВМ, Ухов ВА. Азотирование поверхностного слоя стали и титана компрессионными плазменными потоками. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2012;4:35–42. EDN: OWXGIB.
  16. Углов ВВ, Черенда НН, Шиманский ВИ, Шостак НВ, Асташинский ВМ, Кузьмицкий АМ. Структурно-фазовые превращения в титане, легированном атомами хрома и молибдена при воздействии компрессионных плазменных потоков. Перспективные материалы. 2010;1:24–32. EDN: KZRDVN.
Published
2025-02-12
Keywords: zirconium, diffusion, oxidation, corrosion resistance, plasma treatment, high-temperature annealing, zirconium dioxide
How to Cite
Shymanski, V. I., Abramava, V. V., & Astashynski, V. M. (2025). Structure changes in zirconium after plasma treatment and high-temperature annealing in air atmosphere. Journal of the Belarusian State University. Physics, 1, 17-28. Retrieved from https://journals.bsu.by/index.php/physics/article/view/6841