Precision methods for solving the Schrödinger equation with singular potentials in momentum space
Abstract
A high precise calculation of various energy corrections of the hydrogen-like systems is a relevant problem since the experimental measurements of such values are performed with high accuracy. We use new special quadrature formulas for singular and hypersingular integrals to numerically solve the Schrödinger equation in momentum space with the linear confinement potential, Coulomb and Cornell potentials. It is shown that the energy spectrum of a quantum system can be calculated with an accuracy far exceeding other calculation methods. These methods are easily generalized to the relati-vistic equations, where the potentials are generally derived in momentum space. Consequently, the developed procedure to obtain the energy spectra can be used to study and calculate various effects in the two-body quantum systems, such as hydrogen-like atoms, hadronic atoms and bound quark systems.
References
- BeteHA, SalpeterEE. Arelativistic equation for bound-state problems. Physical Review.1951;84(6):1232–1242. DOI: 10.1103/ PhysRev.84.1232.
- Salpeter EE. Mass-corrections to the fine structure of Hydrogen-like atoms. Physical Review. 1952;87(2):328–343. DOI: 10.1103/PhysRev.87.328.
- Savkli C, Gross M. Quark-antiquark bound states in the relativistic spectator formalism. Physical Review C. 2001;63:035208. DOI: 110.1103/PhysRevC.63.035208.
- Keister BD, Polyzou WN. Relativistic Hamiltonian dynamics in nuclear and particle physics. Advances in Nuclear Physics. 1991;20:225– 479.
- Bete HA, Salpeter EE. Quantum mechanics of one and twoelectron atoms. Berlin – Göttingen – Heidelberg: Springer; 1957. 6. Eyre D, Vary JP. Solving momentum space integral equations for quarkonia spectra with confining potentials. Physical Review D. 1986;34(11):3467–3471. DOI: 10.1103/PhysRevD.34.3467.
- Gammel J, Menzel M. Bethe-Salpeter equation: numerical experience with a hydrogenlike atom.Physical ReviewA. 1973;7(3):858.
- Kwon YR, Tabakin F. Hadronic atoms in momentum space. Physical Review C. 1978;18(2):932–943. DOI: 10.1103/PhysRevC.18.932.
- Mainland G. Logarithmic singularities in two-body, bound-state integral equations. Journal of Computational Physics. 2001; 174(2):852–869. DOI: 10.1006/jcph.2001.6941.
- Norbury JW, Maung KM, Kahana DE. Numerical tests of the Landé subtraction method for the Coulomb potential in momen-tum space. Physical Review A. 1994;50(3):2075–2079. DOI: 10.1103/PhysRevA.50.2075.
- Norbury JW, Maung KM, Kahana DE. Exact numerical solution of the spinless Salpeter equation for the Coulomb potential in momentum space. Physical Review A. 1994;50:3609 –3613. DOI: 10.1103/PhysRevA.50.3609.
- Norbury JW, Maung KM, Kahana DE. Solution of two-body relativistic bound-state equations with confining plus Coulomb interactions. Physical Review D. 1993;47(3):1182–1189. DOI: 10.1103/PhysRevD.47.1182.
- Chen J-K. Nystrom method for the Coulomb and screened Coulomb potentials. FewBody Systems. 2013;54(11):2081–2095. DOI: 10.1007/s00601-013-0713-2.
- Spence JR, Vary JP. Solving momentum space integral equations for quarkonium spectra with confining potentials. 3: Bethe-Salpeter equation with spin. Physical Review C. 1993;47(3):1282–1293. DOI: 10.1103/PhysRevC.47.1282.
- Hersbach H. Relativistic linear potential in momentum space. Physical Review D. 1993;47(7):3027–3033. DOI: 10.1103/Phys-RevD.47.3027.
- Norbury JW, Maung KM, Kahana DE. Confining potential in momentum space. Canadian Journal of Physics. 1992;70:86 –89.
- Tang A, Norbury JW. The Nyström plus correction method for solving bound state equations in momentum space. Physical Review E. 2001;63(6 –2):066703. DOI: 10.1103/PhysRevE.63.066703.
- Deloff A. Quarkonium bound-state problem in momentum space revisited. Annals of Physics. 2007;322:2315–2326. DOI: 10.1016/j.aop.2006.10.004.
- Chen J-K. Spectral method for the Cornell and screened Cornell potentials in momentum space. Physical Review D. 2013; 88(7):076006. DOI: 10.1103/PhysRevD.88.076006.
- Chen J-K. Extended Simpson’s rule for the screened Cornell potential in momentum space.Physical ReviewD. 2012;86(3):036013. DOI: 10.1103/PhysRevD.86.036013.
- Leitão S, Stadler A, Peña MT, Biernat EP. Linear confinement in momentum space: singularity-free bound-state equations. Physical Review D. 2014;90(9):096003. DOI: 10.1103/PhysRevD.90.096003.
- Kang D, Won E. Precise numerical solutions of potential problems using Crank-Nicholson method. Journal of Computational Physics. 2008;227(5):2970 –2976. DOI: 10.1016/j.jcp.2007.11.028.
- Udem Th, Huber A, Gross B, Reichert J, Prevedelli M, Weitz M, Hänsch TW. Phase-coherent measurement of the hydrogen 1S – 2S transition frequency with an optical frequency interval divider chain. Physical Review Letters. 1997;79(14):2646 –2649. DOI: 10.1103/PhysRevLett.79.2646.
- LiuW, BoshierMG, DhawanS, van DyckO, EganP, FeiF, etal. High precision measurements of the ground state hyperfine structure interval of muonium and of the muon magnetic moment. Physical Review Letters. 1999;82:711–714. DOI: 10.1103/PhysRevLett.82.711.
- Chan Y-S, Fannjiang AC, Paulino GH. Integral equations with hypersingular kernels – theory and applications to fracture me-chanics. International Journal of Engineering Science. 2003;41(7):683–720. DOI: 10.1016/S0020-7225(02)00134-9.
- Bichi SL, Eshkuvatov ZK, Nik Long NMA. An automatic quadrature schemes and error estimates for semibounded weighted hadamard type hypersingular integrals. Abstract and Applied Analysis.2014;2014:1–13. Article ID: 387246. DOI: 10.1155/2014/387246.
- Chen ZA, Zhou Y. New method for solving hypersingular integral equations of the first kind. Applied Mathematics Letters. 2011;24(5):636 – 641. DOI: 10.1016/j.aml.2010.11.028.
- Sheshko MA. [On the convergence of quadrature processes for the singular integral]. Izvestiya vysshikh uchebnykh zavedenii. Matematika. 1976;12:108 –118. Russian.
- Deloff A. Semi-spectral Chebyshev method in quantum mechanics. Annals of Physics. 2007;322:1373–1419. DOI: 10.1016/ j.aop.2006.07.004.
- KahanaDE, MaungKM, NorburyJW. Regge trajectories from the two-body, bound-state Thompson equation using aquark-con-fining interaction in momentum space. Physical Review D. 1993;48(7):3408–3409. DOI: 10.1103/PhysRevD.48.3408.
- Andreev VV. On solving the Schrödinger equation with hypersingular kernel in momentum space. Problems of Physics, Mathe matics and Technics. 2016;1(26):7–10. Russian.
- Andreev VV. Precision solution of the Schrödinger equation with Coulomb and linear confining potentials in momentum space. Physics of Particles and Nuclei Letters. 2017;14(1):66 –76. DOI: 10.1134/S1547477117010034.
- Mason JC, Handscomb DC. Chebyshev polynomials. Boca Raton – London – New York – Washington: Chapman & Hall/ CRC; 2002.
- Wolfram S. The Mathematica Book: Wolfram Research. 5th edition. [Place unknown]: Wolfram Media; 2003. 1488 p.
- Fulcher LP, Chen Z, Yeong KC. Energies of quark – anti-quark systems, the Cornell potential, and the spinless Salpeter equa-tion. Physical Review D. 1993;47(9):4122– 4132. DOI: 10.1103/PhysRevD.47.4122.
Copyright (c) 2019 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)