Two layer graphene heterostructures for waves slowing down: operator approach to waveguide problem

  • Marina A. Yakovleva Institute for Nuclear Problems, Belarusian State University, 11 Babrujskaja Street, Minsk 220030, Belarus; National Centre for Scientific Research, Université Paris-Saclay, 10 Thomas Gobert Boulevard, Palaiseau 91120, France https://orcid.org/0000-0002-8718-1080
  • Konstantin G. Batrakov Institute for Nuclear Problems, Belarusian State University, 11 Babrujskaja Street, Minsk 220030, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia https://orcid.org/0000-0002-9073-239X

Abstract

Slowing down the phase velocity of light in media has various applications. The generation of electromagnetic radiation using coherent Cherenkov mechanism is among them. Meanwhile, there is a need for compact terahertz radiation sources. Due to outstanding graphene properties, heterostructures consisting of alternating graphene/dielectric layers can operate as a medium for the generation of terahertz radiation. In the present paper, the slowing down and propagation coefficients for the modes supported in a two-layer graphene structure are studied. The study is conducted by means of the operator approach to wave propagation in stratified structures. The operator approach allows one to use coordinates-free notations and to consider consequently arbitrarily complex heterostructures (including anisotropic layers, for instance). The influence of interlayer distance and the value of graphene chemical potential on waves slowdown is determined. The obtained results open up prospects for creating a new type of terahertz radiation sources.

Author Biographies

Marina A. Yakovleva, Institute for Nuclear Problems, Belarusian State University, 11 Babrujskaja Street, Minsk 220030, Belarus; National Centre for Scientific Research, Université Paris-Saclay, 10 Thomas Gobert Boulevard, Palaiseau 91120, France

junior researcher probationer at the laboratory of nanoelectromagnetics, Institute for Nuclear Problems, Belarusian State University, and postgraduate student at the joint laboratory of micro and nanooptics, Centre for Nanoscience and Nanotechnology (C2N), National Centre for Scientific Research, Université Paris-Saclay

Konstantin G. Batrakov, Institute for Nuclear Problems, Belarusian State University, 11 Babrujskaja Street, Minsk 220030, Belarus; Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus; Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia

PhD (physics and mathematics); leading researcher at the laboratory of nanoelectromagnetism, Institute for Nuclear Problems, Belarusian State University, and associate professor at the department of nuclear physics, faculty of physics, Belarusian State University, and senior researcher at the laboratory of terahertz research, Tomsk State University

References

  1. Lu H, Zeng C, Zhang Q, Liu X, Hossain MdM, Reineck P, et al. Graphene-based active slow surface plasmon polaritons. Scientifc reports. 2015;5:8443. DOI: 10.1038/srep08443.
  2. Krauss TF. Why do we need slow light? Nature Photonics. 2008;2(8):448 – 450. DOI: 10.1038/nphoton.2008.139.
  3. Batrakov KG, Kuzhir PP, Maksimenko SA. Radiative instability of electron beams in carbon nanotubes. Proceedings of SPIE. Nanomodeling II. 2006;6328:63280Z. DOI: 10.1117/12.678029.
  4. Batrakov KG, Maksimenko SA, Kuzhir PP, Thomsen C. Carbon nanotube as a Cherenkov-type light emitter and free electron laser. Physical Review B. 2009;79(12):125408. DOI: 10.1103/PhysRevB.79.125408.
  5. Batrakov K, Maksimenko S. Graphene layered systems as a terahertz source with tuned frequency. Physical Review B. 2017; 95(20):205408. DOI: 10.1103/PhysRevB.95.205408.
  6. Lewis RA. A review of terahertz sources. Journal of Physics D: Applied Physics. 2014;47(37):374001. DOI: 10.1088/0022-3727/47/37/374001.
  7. Turukhin AV, Sudarshanam VS, Shahriar MS, Musser JA, Ham BS, Hemmer PR. Observation of ultraslow and stored light pulses in a solid. Physical Review Letters. 2002;88(2):023602. DOI: 10.1103/PhysRevLett.88.023602.
  8. Chang-Hasnain CJ, Ku P-C, Kim J, Chuang S-L. Variable optical buffer using slow light in semiconductor nanostructures. Proceedings of the IEEE. 2003;91(11):1884 –1897. DOI: 10.1109/JPROC.2003.818335.
  9. Gan Q, Fu Z, Ding YJ, Bartoli FJ. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Physical Review Letters. 2008;100(25):256803. DOI: 10.1103/PhysRevLett.100.256803.
  10. Yamamoto Y, Slusher RE. Optical processes in microcavities. In: Burstein E, Weisbuch C, editors. Confned electrons and photons. New physics and applications. Boston: Springer; 1995. p. 871– 878. (NSSB; volume 340). DOI: 10.1007/978-1-4615-1963-8.
  11. Yanik MF, Fan S. Stopping light all optically. Physical Review Letters. 2004;92(8):083901. DOI: 10.1103/PhysRevLett.92.083901.
  12. Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics. 2007;1(1):65–71. DOI: 10.1038/nphoton.2006.42.
  13. Hybrid and coupled photonic system between nanoparticle and integrated microresonator. Chapter 1. In: Yi YS, editor. Integrated nanophotonic resonators. Fundamentals, devices, and applications. New York: Jenny Stanford Publishing; 2015. p. 15– 44.
  14. Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Voronovich S, Lambin Ph, et al. Flexible transparent graphene/polymermultilayers for effcient electromagnetic feld absorption. Scientifc Reports. 2014;4:7191. DOI: 10.1038/srep07191.
  15. Geim AK, Novoselov KS. The rise of graphene. In: Rudgers P, editor. Nanoscience and technology: a collection of reviews from nature journals. Singapore: World Scientifc; 2009. p. 11–19. DOI: 10.1142/9789814287005_0002.
  16. Katsnelson MI. Graphene: carbon in two dimensions. Cambridge: Cambridge University Press; 2012. 351 p.
  17. Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Applied Physics Letters. 2009;94(24):243114. DOI: 10.1063/1.3147183.
  18. Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, et al. Ballistic transport exceeding 28 mm in CVD grown graphene. Nano Letters. 2016;16(2):1387–1391. DOI: 10.1021/acs.nanolett.5b04840.
  19. Batrakov KG, Saroka VA, Maksimenko SA, Thomsen C. Plasmon polariton deceleration in graphene structures. Journal of Nanophotonics. 2012;6(1):061719.
  20. Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Physical Review B. 1999;60(24):17136. DOI: 10.1103/PhysRevB.60.17136.
  21. Batrakov K, Kuzhir P, Maksimenko S, Volynets N, Voronovich S, Paddubskaya A, et al. Enhanced microwave-to-terahertz absorption in graphene. Applied Physics Letters. 2016;108(12):123101. DOI: 10.1063/1.4944531.
  22. Barkovskii LM, Borzdov GN, Lavrinenko AV. Fresnel’s reflection and transmission operators for stratifed gyroanisotropic media. Journal of Physics A: Mathematical and General. 1987;20(5):1095. DOI: 10.1088/0305-4470/20/5/021.
  23. Barkovsky LM, Furs AN. Operatornye metody opisaniya opticheskikh polei v slozhnykh sredakh [Operator methods for describing optical felds in complex media]. Minsk: Belaruskaya navuka; 2003. 285 p. Russian.
  24. Popov V, Lavrinenko AV, Novitsky A. Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation. Physical Review B. 2016;94(8):085428. DOI: 10.1103/PhysRevB.94.085428.
  25. Popov V, Lavrinenko AV, Novitsky A. Surface waves on multilayer hyperbolic metamaterials: operator approach to effective medium approximation. Physical Review B. 2018;97(12):125428. DOI: 10.1103/PhysRevB.97.125428.
  26. Borzdov GN. Frequency domain wave-splitting techniques for plane stratifed bianisotropic media. Journal of Mathematical Physics. 1997;38(12):6328 – 6366. DOI: 10.1063/1.532216.
  27. Mikhailov S. Carbon nanotubes and graphene for photonic applications. Chapter 7. Electromagnetic nonlinearities in grapheme. Yamashita S, Saito Y, Choi JH, editors. Cambridge: Woodhead Publishing; 2013. p. 171–221. (Woodhead Publishing Series in Electronic and Optical Materials).
  28. Batrakov KG, Saroka VA, Maksimenko SA, Thomsen C. Plasmon polariton deceleration in graphene structures. Journal of Nanophotonics. 2012;6(1):061719. DOI: 10.1117/1.JNP.6.061719.
  29. Jin YS, Kim GJ, Jeon SG. Terahertz dielectric properties of polymers. Journal of the Korean Physical Society. 2006;49(2):513–517.
Published
2020-01-31
Keywords: graphene, heterostructure, Cherenkov radiation, operator approach, phase velocity
Supporting Agencies This publication is based on work supported by Belarus Fundamental Research Fond project F19ARM-017. Authors also acknowledge a support from a grant EU «Horizon 2020», MCSA RISE project No. 734164 Graphene-3d, EU «Horizon 2020» project H2020-644076 CoExAN, and World Federation of Scientists on the project «Science and Technologies».
How to Cite
Yakovleva, M. A., & Batrakov, K. G. (2020). Two layer graphene heterostructures for waves slowing down: operator approach to waveguide problem. Journal of the Belarusian State University. Physics, 1, 73-82. https://doi.org/10.33581/2520-2243-2020-1-73-82