Two layer graphene heterostructures for waves slowing down: operator approach to waveguide problem
Abstract
Slowing down the phase velocity of light in media has various applications. The generation of electromagnetic radiation using coherent Cherenkov mechanism is among them. Meanwhile, there is a need for compact terahertz radiation sources. Due to outstanding graphene properties, heterostructures consisting of alternating graphene/dielectric layers can operate as a medium for the generation of terahertz radiation. In the present paper, the slowing down and propagation coefficients for the modes supported in a two-layer graphene structure are studied. The study is conducted by means of the operator approach to wave propagation in stratified structures. The operator approach allows one to use coordinates-free notations and to consider consequently arbitrarily complex heterostructures (including anisotropic layers, for instance). The influence of interlayer distance and the value of graphene chemical potential on waves slowdown is determined. The obtained results open up prospects for creating a new type of terahertz radiation sources.
References
- Lu H, Zeng C, Zhang Q, Liu X, Hossain MdM, Reineck P, et al. Graphene-based active slow surface plasmon polaritons. Scientifc reports. 2015;5:8443. DOI: 10.1038/srep08443.
- Krauss TF. Why do we need slow light? Nature Photonics. 2008;2(8):448 – 450. DOI: 10.1038/nphoton.2008.139.
- Batrakov KG, Kuzhir PP, Maksimenko SA. Radiative instability of electron beams in carbon nanotubes. Proceedings of SPIE. Nanomodeling II. 2006;6328:63280Z. DOI: 10.1117/12.678029.
- Batrakov KG, Maksimenko SA, Kuzhir PP, Thomsen C. Carbon nanotube as a Cherenkov-type light emitter and free electron laser. Physical Review B. 2009;79(12):125408. DOI: 10.1103/PhysRevB.79.125408.
- Batrakov K, Maksimenko S. Graphene layered systems as a terahertz source with tuned frequency. Physical Review B. 2017; 95(20):205408. DOI: 10.1103/PhysRevB.95.205408.
- Lewis RA. A review of terahertz sources. Journal of Physics D: Applied Physics. 2014;47(37):374001. DOI: 10.1088/0022-3727/47/37/374001.
- Turukhin AV, Sudarshanam VS, Shahriar MS, Musser JA, Ham BS, Hemmer PR. Observation of ultraslow and stored light pulses in a solid. Physical Review Letters. 2002;88(2):023602. DOI: 10.1103/PhysRevLett.88.023602.
- Chang-Hasnain CJ, Ku P-C, Kim J, Chuang S-L. Variable optical buffer using slow light in semiconductor nanostructures. Proceedings of the IEEE. 2003;91(11):1884 –1897. DOI: 10.1109/JPROC.2003.818335.
- Gan Q, Fu Z, Ding YJ, Bartoli FJ. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Physical Review Letters. 2008;100(25):256803. DOI: 10.1103/PhysRevLett.100.256803.
- Yamamoto Y, Slusher RE. Optical processes in microcavities. In: Burstein E, Weisbuch C, editors. Confned electrons and photons. New physics and applications. Boston: Springer; 1995. p. 871– 878. (NSSB; volume 340). DOI: 10.1007/978-1-4615-1963-8.
- Yanik MF, Fan S. Stopping light all optically. Physical Review Letters. 2004;92(8):083901. DOI: 10.1103/PhysRevLett.92.083901.
- Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics. 2007;1(1):65–71. DOI: 10.1038/nphoton.2006.42.
- Hybrid and coupled photonic system between nanoparticle and integrated microresonator. Chapter 1. In: Yi YS, editor. Integrated nanophotonic resonators. Fundamentals, devices, and applications. New York: Jenny Stanford Publishing; 2015. p. 15– 44.
- Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Voronovich S, Lambin Ph, et al. Flexible transparent graphene/polymermultilayers for effcient electromagnetic feld absorption. Scientifc Reports. 2014;4:7191. DOI: 10.1038/srep07191.
- Geim AK, Novoselov KS. The rise of graphene. In: Rudgers P, editor. Nanoscience and technology: a collection of reviews from nature journals. Singapore: World Scientifc; 2009. p. 11–19. DOI: 10.1142/9789814287005_0002.
- Katsnelson MI. Graphene: carbon in two dimensions. Cambridge: Cambridge University Press; 2012. 351 p.
- Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Applied Physics Letters. 2009;94(24):243114. DOI: 10.1063/1.3147183.
- Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, et al. Ballistic transport exceeding 28 mm in CVD grown graphene. Nano Letters. 2016;16(2):1387–1391. DOI: 10.1021/acs.nanolett.5b04840.
- Batrakov KG, Saroka VA, Maksimenko SA, Thomsen C. Plasmon polariton deceleration in graphene structures. Journal of Nanophotonics. 2012;6(1):061719.
- Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Physical Review B. 1999;60(24):17136. DOI: 10.1103/PhysRevB.60.17136.
- Batrakov K, Kuzhir P, Maksimenko S, Volynets N, Voronovich S, Paddubskaya A, et al. Enhanced microwave-to-terahertz absorption in graphene. Applied Physics Letters. 2016;108(12):123101. DOI: 10.1063/1.4944531.
- Barkovskii LM, Borzdov GN, Lavrinenko AV. Fresnel’s reflection and transmission operators for stratifed gyroanisotropic media. Journal of Physics A: Mathematical and General. 1987;20(5):1095. DOI: 10.1088/0305-4470/20/5/021.
- Barkovsky LM, Furs AN. Operatornye metody opisaniya opticheskikh polei v slozhnykh sredakh [Operator methods for describing optical felds in complex media]. Minsk: Belaruskaya navuka; 2003. 285 p. Russian.
- Popov V, Lavrinenko AV, Novitsky A. Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation. Physical Review B. 2016;94(8):085428. DOI: 10.1103/PhysRevB.94.085428.
- Popov V, Lavrinenko AV, Novitsky A. Surface waves on multilayer hyperbolic metamaterials: operator approach to effective medium approximation. Physical Review B. 2018;97(12):125428. DOI: 10.1103/PhysRevB.97.125428.
- Borzdov GN. Frequency domain wave-splitting techniques for plane stratifed bianisotropic media. Journal of Mathematical Physics. 1997;38(12):6328 – 6366. DOI: 10.1063/1.532216.
- Mikhailov S. Carbon nanotubes and graphene for photonic applications. Chapter 7. Electromagnetic nonlinearities in grapheme. Yamashita S, Saito Y, Choi JH, editors. Cambridge: Woodhead Publishing; 2013. p. 171–221. (Woodhead Publishing Series in Electronic and Optical Materials).
- Batrakov KG, Saroka VA, Maksimenko SA, Thomsen C. Plasmon polariton deceleration in graphene structures. Journal of Nanophotonics. 2012;6(1):061719. DOI: 10.1117/1.JNP.6.061719.
- Jin YS, Kim GJ, Jeon SG. Terahertz dielectric properties of polymers. Journal of the Korean Physical Society. 2006;49(2):513–517.
Copyright (c) 2020 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)