Electroluminescence of SiO2 films grown on Si by thermal oxidation and plasma-enhanced chemical vapor deposition
Abstract
Emission of the silicon oxide films grown on Si by wet thermal oxidation at 900 °С and by plasma-enhanced chemical vapor deposition from the SiH4 + N2O mixture at 350 °С has been compared using electroluminescence. The electroluminescence spectra were recorded in electrolyte – insulator – semiconductor system. The intense band in the red range with a maximum at 1.9 eV dominates the electroluminescence spectrum of the thermal oxide film. It was concluded that this band is related with the existence of silanol groups (Si — OH) in the oxide matrix. Multiband emission in the UV range is observed in the electroluminescence spectrum of the oxide film formed by plasma-enhanced chemical vapor deposition. Additional investigations using IR and RS spectroscopy revealed that observed spectrum modulation is of an oscillatory nature and is not the result of interference. Presumably, the luminescence in the UV region is due to the presence of oxygen deficiency centers containing bonds with hydrogen atoms.
References
- Konstantinova-Shlezinger MA, editor. Lyuminestsentnyi analiz [Luminescence analysis]. Moscow: Fizmatgiz; 1961. 400 p. Russian.
- Baraban AP, Dmitriev VA, Petrov YuV. Elektrolyuminestsentsiya v tverdotel’nykh sloistykh strukturakh na osnove kremniya [Electroluminescence in solid-state silicon-based layered structures]. Saint Petersburg: Izdatel’stvo Sankt-Peterburgskogo universiteta; 2009. 195 p. Russian.
- McKnight SW, Palic ED. Cathodoluminescence of SiO2 films. Journal of Non-Crystalline Solids. 1980;40(3):595–603. DOI: 10.1016/0022-3093(80)90133-7.
- Dyakov SA, Zhigunov DM, Hartel A, Zacharias M, Perova TS, Timoshenko VYu. Enhancement of photoluminescence signal from ultrathin layers with silicon nanocrystals. Applied Physics Letters. 2012;100(6):061908. DOI: 10.1063/1.3682537.
- Parkhomenko I, Vlasukova L, Komarov F, Milchanin O, Makhavikou M, Mudryi A, et al. Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films. Thin Solid Films. 2017;626:70–75. DOI: 10.1016/j.tsf.2017.02.027.
- Baraban AP, Samarina SN, Prokofiev VA, Dmitriev VA, Selivanov AA, Petrov Y. Luminescence of SiO2 layers on silicon at various types of excitation. Journal of Luminescence. 2019;205:102–108. DOI: 10.1016/j.jlumin.2018.09.009.
- Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters. 1990;57(10):1046–1048. DOI: 10.1063/1.103561.
- Jambois O, Rinnert H, Devaux X, Vergnat M. Photoluminescence and electroluminescence of size-controlled silicon nanocrystallites embedded in SiO2 thin films. Journal of Applied Physics. 2005;98:046105. DOI: 10.1063/1.2034087.
- Sheng-Wen Fu, Hui-Ju Chen, Hsuan-Ta Wu, Chuan-Feng Shih. Effect of SiO2 layers on electroluminescence from Si nanocrystal / SiO2 superlattices prepared using argon ion beam assisted sputtering. Vacuum. 2016;126:59–62. DOI: 10.1016/j.vacuum.2016.01.020.
- Berencén Y, Mundet B, Rodríguez JA, Montserrat J, Domínguez C, Garrido B. Hot electron engineering for boosting electroluminescence efficiencies of silicon-rich nitride light emitting devices. Journal of Luminescence. 2017;183:26–31. DOI: 10.1016/j.jlumin.2016.11.020.
- Martínez HP, Luna JA, Morales R, Casco JF, Hernández JAD, Luna A, et al. Blue electroluminescence in SRO-HFCVD films. Nanomaterials. 2021;11(4):943. DOI: 10.3390/nano11040943.
- Rodríguez JA, Vásquez-Agustín MA, Morales-Sánchez A, Aceves-Mijares M. Emission mechanisms of Si nanocrystals and defects in SiO2 materials. Journal of Nanomaterials. 2014;2014:409482. DOI: 10.1155/2014/409482.
- Baraban AP, Bulavinov VV, Konorov PP. Elektronika sloev SiO2 na kremnii [Electronics of SiO2 layers on silicon]. Leningrad: Izdatel’stvo Leningradskogo universiteta; 1988. 304 p. Russian.
- Romanov IA, Komarov FF, Vlasukova LA, Parkhomenko IN, Kovalchuk NS. Processes of electroluminescence degradation of light-emitting structures based on thin silicon oxide and nitride films. Doklady of the National Academy of Sciences of Belarus. 2021;65(2):158–167. DOI: 10.29235/1561-8323-2021-65-2-158-167. Russian.
- Baraban AP, Egorov DV, Askinazi AYu, Miloglyadova LV. Electroluminescence of Si – SiO2 – Si3N4 structures. Technical Physics Letters. 2002;28(12):978–980. DOI: 10.1134/1.1535507.
- Skuja L. The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. Journal of Non-Crystalline Solids. 1994;179:51–69. DOI: 10.1016/0022-3093(94)90684-X.
- Bugaev KO, Zelenina AA, Volodin VA. Vibrational spectroscopy of chemical species in silicon and silicon-rich nitride thin films. International Journal of Spectroscopy. 2012;2012:281851. DOI: 10.1155/2012/281851.
- Lucovsky G, Richard PD, Tsu DV, Lin SY, Markunas RJ. Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition. Journal of Vacuum Science & Technology A. 1986;4:681–688. DOI: 10.1116/1.573832.
Copyright (c) 2021 Journal of the Belarusian State University. Physics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who are published in this journal agree to the following:
- The authors retain copyright on the work and provide the journal with the right of first publication of the work on condition of license Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
- The authors retain the right to enter into certain contractual agreements relating to the non-exclusive distribution of the published version of the work (e.g. post it on the institutional repository, publication in the book), with the reference to its original publication in this journal.
- The authors have the right to post their work on the Internet (e.g. on the institutional store or personal website) prior to and during the review process, conducted by the journal, as this may lead to a productive discussion and a large number of references to this work. (See The Effect of Open Access.)