Simulation modelling and data mining approach for the study of applied fluorescence spectroscopy systems

  • Mikalai M. Yatskou Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus
  • Vladimir V. Apanasovich Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract

For the study of biomolecular compounds in applied fluorescence spectroscopy supporting systems an integrated approach, based on simulation modelling and data mining methods and including simulation models of physical processes, methods and algorithms for data mining, and software for studying molecular and cellular systems is proposed. The idea of an integrated approach is in using simulation modelling of biophysical processes occurring in the object of study, selecting the most informative experimental data, and determining the characteristics of the object using data mining algorithms. The effectiveness of the algorithms of the proposed approach is verified by analysing simulated and experimental data of fluorescence spectroscopy systems. As a practical implementation of the developed integrated methodology, the computational platform FluorSimStudio was developed for processing time-resolved fluorescence measurements. The digital platform is an open system and allows addition of complex analysis models, taking into account the development of new modelling and data processing algorithms. The use of complex analysis improves the efficiency of studying biophysical systems during big data analysis.

Author Biographies

Mikalai M. Yatskou, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

PhD (physics and mathematics), docent; head of the department of systems analysis and computer simulation, faculty of radiophysics and computer technologies

Vladimir V. Apanasovich, Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

doctor of science (physics and mathematics), full professor; professor at the department of systems analysis and computer simulation, faculty of radiophysics and computer technologies

References

  1. Lakowicz JR. Principles of fluorescence spectroscopy. 3rd edition. New York: Springer; 2006. XXVI, 954 p. DOI: 10.1007/978-0-387-46312-4.
  2. Verveer PJ, editor. Advanced fluorescence microscopy: methods and protocols. New York: Humana Press; 2015. XI, 294 p. (Methods in molecular biology; volume 1251). DOI: 10.1007/978-1-4939-2080-8.
  3. Demchenko AP. Introduction to fluorescence sensing. Volume 1, Materials and devices. 3rd edition. Cham: Springer; 2020. XXII, 657 p. DOI: 10.1007/978-3-030-60155-3.
  4. Weinacht TC, Pearson BJ. Time-resolved spectroscopy: an experimental perspective. Boca Raton: CRC Press; 2019. XII, 358 p. (Textbook series in physical sciences). DOI: 10.1201/9780429440823.
  5. Buckup T, Léonard J, editors. Multidimensional time-resolved spectroscopy. Cham: Springer; 2019. IX, 320 p. (Topics in current chemistry collections). DOI: 10.1007/978-3-030-02478-9.
  6. Gryczynski Z, Gryczynski I. Practical fluorescence spectroscopy. Boca Raton: CRC Press; 2020. XX, 772 p. DOI: 10.1201/9781315374758.
  7. Cox G, editor. Fundamentals of fluorescence imaging. Singapore: Jenny Stanford Publishing; 2019. XVIII, 458 p. DOI: 10.1201/9781351129404.
  8. König K, editor. Multiphoton microscopy and fluorescence lifetime imaging: applications in biology and medicine. Berlin: Walter de Gruyter; 2018. XXX, 450 p. DOI: 10.1515/9783110429985.
  9. Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. Journal of Biomedical Optics. 2020;25(7):071203. DOI: 10.1117/1.JBO.25.7.071203.
  10. Datta R, Gillette A, Stefely M, Skala MC. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. Journal of Biomedical Optics. 2021;26(7):070603. DOI: 10.1117/1.JBO.26.7.070603.
  11. Xiao D, Zang Z, Xie W, Sapermsap N, Chen Y, Li DDU. Spatial resolution improved fluorescence lifetime imaging via deep learning. Optics Express. 2022;30(7):11479–11494. DOI: 10.1364/OE.451215.
  12. Wang Q, Li Y, Xiao D, Zang Z, Jiao Z, Chen Y, et al. Simple and robust deep learning approach for fast fluorescence lifetime imaging. Sensors. 2022;22(19):7293. DOI: 10.3390/s22197293.
  13. Ji M, Zhong J, Xue R, Su W, Kong Y, Fei Y, et al. Early detection of cervical cancer by fluorescence lifetime imaging microscopy combined with unsupervised machine learning. International Journal of Molecular Sciences. 2022;23(19):11476. DOI: 10.3390/ijms231911476.
  14. Place BC, Troublefield CA, Murphy RD, Sinai AP, Patwardhan AR. Machine learning based classification of mitochondrial morphologies from fluorescence microscopy images of Toxoplasma gondii cysts. PLOS One. 2023;18(2):e0280746. DOI: 10.1371/journal.pone.0280746.
  15. Yatskou MM. Computer simulation of energy relaxation and transport in organized porphyrin systems [dissertation on the Internet]. Wageningen: Ponsen & Looijen Printing Establishment; 2001 [cited 2023 April 4]. 176 p. Available from: https://edepot.wur.nl/193545.
  16. Yatskou MM, Skakun VV, Apanasovich VV. Method for processing fluorescence decay kinetic curves using data mining algorithms. Journal of Applied Spectroscopy. 2020;87(2):333–344. DOI: 10.1007/s10812-020-01004-3.
  17. Yatskou MM, Apanasovich VV. Simulation modelling and machine learning platform for processing fluorescence spectroscopy data. In: Tuzikov AV, Belotserkovsky AM, Lukashevich MM, editors. Pattern recognition and information processing. Revised selected papers of the 15th International conference; 2021 September 21–24; Minsk, Belarus. Cham: Springer; 2022. p. 178–190 (Communications in computer and information science; volume 1562). DOI: 10.1007/978-3-030-98883-8_13.
  18. Murphy KP. Probabilistic machine learning: an introduction [Internet]. Cambridge: MIT Press; 2022 [cited 2022 July 7]. 864 p. Available from: https://mitpress.mit.edu/9780262369305/probabilistic-machine-learning.
  19. Lisitsa Y, Yatskou M, Skakun V, Apanasovich V. Classification methods for the analysis of segmented objects on fluorescent images of cancer cells. Vestnik of Polotsk State University. Part C, Fundamental Sciences [Internet]. 2020 [cited 2023 November 1];4:15–22. Available from: https://journals.psu.by/fundamental/article/view/440. Russian.
  20. Apanasovich VV, Novikov EG, Yatskov NN, Koehorst RBM, Schaafsma TJ, van Hoek A. Study of the Zn-porphyrin structure by fluorescence spectroscopy methods. Journal of Applied Spectroscopy. 1999;66(4):613–616. DOI: 10.1007/BF02675396.
  21. Meyer M, Yatskou MM, Pfenninger M, Huber S, Calzaferri G, Digris A, et al. Excitation energy migration in a photonic dyezeolite antenna: computational techniques. Journal of Computational Methods in Science and Engineering. 2003;3(3):395–402. DOI: 10.3233/JCM-2003-3303.
  22. Dimov IT. Monte Carlo methods for applied scientists. Singapore: World Scientific Publishing; 2008. XV, 291 p. DOI: 10.1142/2813.
  23. Rubinstein RY, Kroese DP. Simulation and the Monte Carlo method. 3rd edition. Hoboken: John Wiley & Sons; 2017. XVII, 414 p. (Wiley series in probability and statistics). DOI: 10.1002/9781118631980.
  24. Binder K, Heermann DW. Monte Carlo simulation in statistical physics: an introduction. 6th edition. Cham: Springer; 2019. XVII, 258 p. (Graduate texts in physics). DOI: 10.1007/978-3-030-10758-1.
  25. Halavatyi AА, Nazarov PV, Al Tanoury Z, Apanasovich VV, Yatskou MM, Friederich E. A mathematical model of actin filament turnover for fitting FRAP data. European Biophysics Journal. 2010;39(4):669–677. DOI: 10.1007/s00249-009-0558-2.
  26. Apanasovich VV, Novikov EG, Yatskov NN. Data analysis in time-resolved fluorescence spectroscopy using computer simulation. In: Thompson RB, editor. Advances in fluorescence sensing technology III. Proceedings of BIOS’97, part of Photonics West; 1997 February 8–14; San Jose, USA. Bellingham: SPIE; 1997. p. 515–522 (Proceedings of SPIE; volume 2980). DOI: 10.1117/12.273558.
  27. Apanasovich VV, Novikov EG, Yatskov NN. Analysis of the decay kinetics of fluorescence of complex molecular systems using the Monte Carlo method. Journal of Applied Spectroscopy. 2000;67(5):842–851. DOI: 10.1023/A:1004111716211.
  28. Durán JM. Computer simulations in science and engineering: concepts, practices, perspectives. Cham: Springer; 2018. XXI, 209 p. (The frontiers collection). DOI: 10.1007/978-3-319-90882-3.
  29. Zeigler BP, Muzy A, Kofman E. Theory of modeling and simulation: discrete event and iterative system computational foundations. 3rd edition. [S. l.]: Academic Press; 2018. XXIV, 667 p. DOI: 10.1016/C2016-0-03987-6.
  30. Tang J, Leu G, Abbass HA. Simulation and computational red teaming for problem solving. Hoboken: John Wiley & Sons; 2020. XXVII, 464 p. (IEEE Press series on computational intelligence). DOI: 10.1002/9781119527183.
  31. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI’95. Proceedings of the 14th International joint conference on artificial intelligence; 1995 August 20–25; Montreal, Canada. Volume 2. San Francisco: Morgan Kaufmann Publishers; 1995. p. 1137–1143.
  32. Liu L, Özsu MT, editors. Encyclopedia of database systems. New York: Springer; 2009. CCCXLV, 4355 p. DOI: 10.1007/978-0-387-39940-9.
  33. Yatskou MM, Donker H, Koehorst RBM, van Hoek A, Schaafsma TJ. A study of energy transfer processes in zinc-porphyrin films using Monte Carlo simulation of fluorescence decay. Chemical Physics Letters. 2001;345(1–2):141–150. DOI: 10.1016/S0009-2614(01)00867-3.
  34. Yatskou MM, Donker H, Novikov EG, Koehorst RBM, van Hoek A, Apanasovich VV, et al. Nonisotropic excitation energy transport in organized molecular systems: Monte Carlo simulation-based analysis of fluorescence and fluorescence anisotropy decay. The Journal of Physical Chemistry A. 2001;105(41):9498–9508. DOI: 10.1021/jp0044227.
  35. Giganti A, Friederich E. The actin cytoskeleton as a therapeutic target: state of the art and future directions. In: Meijer L, Jézéquel A, Roberge M, editors. Cell cycle regulators as therapeutic targets. Roscoff: Life in Progress Editions; 2003. p. 511–525 (Progress in cell cycle research; volume 5). PMID: 14593746.
  36. Pollard TD. Actin and actin-binding proteins. Cold Spring Harbor Perspectives in Biology. 2016;8(8):a018226. DOI: 10.1101/cshperspect.a018226.
  37. Kitamura A, Kinjo M. State-of-the-art fluorescence fluctuation-based spectroscopic techniques for the study of protein aggregation. International Journal of Molecular Sciences. 2018;19(4):964. DOI: 10.3390/ijms19040964.
  38. Halavatyi AA, Nazarov PV, Medves S, van Troys M, Ampe C, Yatskou M, et al. An integrative simulation model linking major biochemical reactions of actin-polymerization to structural properties of actin filaments. Biophysical Chemistry. 2009;140(1–3):24–34. DOI: 10.1016/j.bpc.2008.11.006.
  39. Al Tanoury Z, Schaffner-Reckinger E, Halavatyi A, Hoffmann C, Moes M, Hadzic E, et al. Quantitative kinetic study of the actin-bundling protein L-plastin and of its impact on actin turn-over. PLOS One. 2010;5(2):e9210. DOI: 10.1371/journal.pone.0009210.
  40. Lisitsa EV, Yatskou MM, Apanasovich VV, Apanasovich TV, Shytsik MM. Simulation model for three-channel luminescent images of cancer cell populations. Journal of Applied Spectroscopy. 2015;81(6):996–1003. DOI: 10.1007/s10812-015-0041-z.
  41. Lisitsa YV, Yatskou MM, Apanasovich VV, Apanasovich TV. Algorithm for automatic segmentation of nuclear boundaries in cancer cells in three-channel luminescent images. Journal of Applied Spectroscopy. 2015;82(4):634–643. DOI: 10.1007/s10812-015-0156-2.
  42. Yatskou MM, Apanasovich VV. Computational platform FluorSimStudio for processing kinetic curves of fluorescence decay using simulation modeling and data mining algorithms. Journal of Applied Spectroscopy. 2021;88(3):571–579. DOI: 10.1007/s10812-021-01211-6.
  43. Yatskov NN, Apanasovich VV, Koehorst RBM, van Hoek A, Schaafsma TJ. Electronic spectra and fluorescence polarization kinetics of thin Zn-porphyrin films. Journal of Applied Spectroscopy. 2003;70(3):372–377. DOI: 10.1023/A:1025177320845.
  44. Yatskou MM, Meyer M, Huber S, Pfenniger M, Calzaferri G. Electronic excitation energy migration in a photonic dye-zeolite antenna. ChemPhysChem. 2003;4(6):567–587. DOI: 10.1002/cphc.200300567.
  45. Yatskou MM, Skakun VV, Nederveen-Schippers L, Kortholt A, Apanasovich VV. Complex analysis of fluorescence intensity fluctuations of molecular compounds. Journal of Applied Spectroscopy. 2020;87(4):685–692. DOI: 10.1007/s10812-020-01055-6.
  46. Skakun VV, Yatskou MM, Nederveen-Schippers L, Kortholt A, Apanasovich VV. Component analysis of photon counting histograms in fluorescence fluctuation spectroscopy experiments. Journal of Applied Spectroscopy. 2022;89(5):930–939. DOI: 10.1007/s10812-022-01450-1.
Published
2024-01-31
Keywords: fluorescence spectroscopy, data processing, simulation modelling, data mining, computational platform
How to Cite
Yatskou, M. M., & Apanasovich, V. V. (2024). Simulation modelling and data mining approach for the study of applied fluorescence spectroscopy systems. Journal of the Belarusian State University. Physics, 1, 4-15. Retrieved from https://journals.bsu.by/index.php/physics/article/view/6009